7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water

      , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Adsorptive removal of antibiotics from water and wastewater: Progress and challenges.

          Antibiotics as emerging contaminants are of global concern due to the development of antibiotic resistant genes potentially causing superbugs. Current wastewater treatment technology cannot sufficiently remove antibiotics from sewage, hence new and low-cost technology is needed. Adsorptive materials have been extensively used for the conditioning, remediation and removal of inorganic and organic hazardous materials, although their application for removing antibiotics has been reported for ~30 out of 250 antibiotics so far. The literature on the adsorptive removal of antibiotics using different adsorptive materials is summarized and critically reviewed, by comparing different adsorbents with varying physicochemical characteristics. The efficiency for removing antibiotics from water and wastewater by different adsorbents has been evaluated by examining their adsorption coefficient (Kd) values. For sulfamethoxazole the different adsorbents followed the trend: biochar (BC)> multi-walled carbon nanotubes (MWCNTs)>graphite = clay minerals, and for tetracycline the adsorptive materials followed the trend: SWCNT > graphite > MWCNT = activated carbon (AC) > bentonite = humic substance = clay minerals. The underlying controlling parameters for the adsorption technology have been examined. In addition, the cost of preparing adsorbents has been estimated, which followed the order of BCs < ACs < ion exchange resins < MWCNTs < SWCNTs. The future research challenges on process integration, production and modification of low-cost adsorbents are elaborated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review.

            This review focuses on the removal of emerging contaminants (ECs) by biological, chemical and hybrid technologies in effluents from wastewater treatment plants (WWTPs). Results showed that endocrine disruption chemicals (EDCs) were better removed by membrane bioreactor (MBR), activated sludge and aeration processes among different biological processes. Surfactants, EDCs and personal care products (PCPs) can be well removed by activated sludge process. Pesticides and pharmaceuticals showed good removal efficiencies by biological activated carbon. Microalgae treatment processes can remove almost all types of ECs to some extent. Other biological processes were found less effective in ECs removal from wastewater. Chemical oxidation processes such as ozonation/H2O2, UV photolysis/H2O2 and photo-Fenton processes can successfully remove up to 100% of pesticides, beta blockers and pharmaceuticals, while EDCs can be better removed by ozonation and UV photocatalysis. Fenton process was found less effective in the removal of any types of ECs. A hybrid system based on ozonation followed by biological activated carbon was found highly efficient in the removal of pesticides, beta blockers and pharmaceuticals. A hybrid ozonation-ultrasound system can remove up to 100% of many pharmaceuticals. Future research directions to enhance the removal of ECs have been elaborated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater.

              Modified biochar (BC) is reviewed in its preparation, functionality, applications and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. The Langmuir isotherm model provides the best fit for sorption equilibria of heavy metals and anionic contaminants, while the Freundlich isotherm model is the best fit for emerging contaminants. The pseudo 2(nd) order is the most appropriate model of sorption kinetics for all contaminants. Future research should focus on industry-scale applications and hybrid systems for contaminant removal due to scarcity of data.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                March 2017
                March 2017
                : 311
                : 348-358
                Article
                10.1016/j.cej.2016.11.106
                9ad29438-300d-4408-8bef-e2153446a5c6
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article