6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global atmospheric methane: budget, changes and dangers

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A factor of 2.5 increase in the global abundance of atmospheric methane (CH 4 ) since 1750 contributes 0.5 Wm −2 to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm −2 in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm −2 of indirect forcing. Since CH 4 has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH 4 ’s budget of emissions and sinks. Atmospheric observations of CH 4 abundance and its rate of increase, combined with an estimate of the CH 4 lifetime, constrain total global CH 4 emissions to between 500 and 600 Tg CH 4 yr −1 . While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH 4 budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH 4 abundance and its isotopic composition ( δ 13 C, δ D (D= 2 H) and δ 14 C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Three-dimensional model synthesis of the global methane cycle

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

            Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contribution of anthropogenic and natural sources to atmospheric methane variability.

              Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Niño event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.
                Bookmark

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
                Phil. Trans. R. Soc. A.
                The Royal Society
                1364-503X
                1471-2962
                May 28 2011
                May 28 2011
                May 28 2011
                : 369
                : 1943
                : 2058-2072
                Affiliations
                [1 ]US National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305, USA
                [2 ]Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
                Article
                10.1098/rsta.2010.0341
                21502176
                9a09dc57-f9d3-41d9-8817-a75de723c45a
                © 2011

                https://royalsociety.org/journals/ethics-policies/data-sharing-mining/

                History

                Comments

                Comment on this article