46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over the last several decades have demonstrated successful reduction of secondary injury mechanisms and, in some selective cases, improved outcomes in specific TBI patient populations. However, the benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials to significantly improve neurological outcomes. Although the exact reasons underlying the inability to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma patients. It is known that multiple factors including patient recruitment, clinical treatment variables, and cooling methodologies are all important in yielding beneficial effects. High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology and impact of traumatic brain injury: a brief overview.

          Traumatic brain injury (TBI) is an important public health problem in the United States and worldwide. The estimated 5.3 million Americans living with TBI-related disability face numerous challenges in their efforts to return to a full and productive life. This article presents an overview of the epidemiology and impact of TBI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classification of traumatic brain injury for targeted therapies.

            The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neurological Disorders and Stroke, with support from the Brain Injury Association of America, the Defense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid classification system for TBI that could be used to link specific patterns of brain and neurovascular injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion for inclusion in most TBI clinical trials. While the GCS is extremely useful in the clinical management and prognosis of TBI, it does not provide specific information about the pathophysiologic mechanisms which are responsible for neurological deficits and targeted by interventions. On the premise that brain injuries with similar pathoanatomic features are likely to share common pathophysiologic mechanisms, participants proposed that a new, multidimensional classification system should be developed for TBI clinical trials. It was agreed that preclinical models were vital in establishing pathophysiologic mechanisms relevant to specific pathoanatomic types of TBI and verifying that a given therapeutic approach improves outcome in these targeted TBI types. In a clinical trial, patients with the targeted pathoanatomic injury type would be selected using an initial diagnostic entry criterion, including their severity of injury. Coexisting brain injury types would be identified and multivariate prognostic modeling used for refinement of inclusion/exclusion criteria and patient stratification. Outcome assessment would utilize endpoints relevant to the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitoring, and assessment tools were discussed. Recommendations were made for enhancing the utility of available or emerging tools in order to facilitate implementation of a pathoanatomic classification approach for clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Traumatic brain injury in the United States: A public health perspective.

              Traumatic brain injury (TBI) is a leading cause of death and disability among persons in the United States. Each year, an estimated 1.5 million Americans sustain a TBI. As a result of these injuries, 50,000 people die, 230,000 people are hospitalized and survive, and an estimated 80,000-90,000 people experience the onset of long-term disability. Rates of TBI-related hospitalization have declined nearly 50% since 1980, a phenomenon that may be attributed, in part, to successes in injury prevention and also to changes in hospital admission practices that shift the care of persons with less severe TBI from inpatient to outpatient settings. The magnitude of TBI in the United States requires public health measures to prevent these injuries and to improve their consequences. State surveillance systems can provide reliable data on injury causes and risk factors, identify trends in TBI incidence, enable the development of cause-specific prevention strategies focused on populations at greatest risk, and monitor the effectiveness of such programs. State follow-up registries, built on surveillance systems, can provide more information regarding the frequency and nature of disabilities associated with TBI. This information can help states and communities to design, implement, and evaluate cost-effective programs for people living with TBI and for their families, addressing acute care, rehabilitation, and vocational, school, and community support.
                Bookmark

                Author and article information

                Journal
                Brain Circ
                Brain Circ
                BC
                Brain Circulation
                Medknow Publications & Media Pvt Ltd (India )
                2394-8108
                2455-4626
                Oct-Dec 2017
                29 December 2017
                : 3
                : 4
                : 186-198
                Affiliations
                [1] Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
                Author notes
                Address for correspondence: Dr. W Dalton Dietrich, Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14 th Terrace, LPLC 2-30, Miami, FL 33136, USA. E-mail: ddietrich@ 123456miami.edu
                Article
                BC-3-186
                10.4103/bc.bc_28_17
                6057704
                30276324
                985b2eb8-ec1b-4b6f-b3c6-bbfedd4181f8
                Copyright: © 2017 Brain Circulation

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 07 November 2017
                : 20 November 2017
                : 24 November 2017
                Categories
                Review Article

                clinical trials,fever,pathophysiology,targeted temperature management,therapeutic hypothermia,traumatic brain injury

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content296

                Cited by24

                Most referenced authors1,826