17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thermal photonics with broken symmetries

      , , ,
      eLight
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanophotonic engineering provides an effective platform to manipulate thermal emission on-demand, enabling unprecedented heat management superior to conventional bulk materials. Amongst a plethora of nanophotonic structures, symmetries play an important role in controlling radiative heat transfer in both near-field and far-field. In physics, broken symmetries generally increase the degree of freedom in a system, enriching the understanding of physical mechanisms and bringing many exciting opportunities for novel applications. In this review, we discussed the underlying physics and functionalities of nanophotonic structures with broken geometrical symmetries, engineered mode symmetries, and broken reciprocity for the control of thermal emission. We overview a variety of physical phenomena and interesting applications, and provide the outlook for future development.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          The Fano resonance in plasmonic nanostructures and metamaterials.

          Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Passive radiative cooling below ambient air temperature under direct sunlight.

            Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bound states in the continuum

                Bookmark

                Author and article information

                Contributors
                Journal
                eLight
                eLight
                Springer Science and Business Media LLC
                2662-8643
                December 2022
                December 02 2022
                : 2
                : 1
                Article
                10.1186/s43593-022-00025-z
                984f8009-89ba-40af-9c6e-2935ef7d03e9
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article