Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a scale rho ~ 0.3 fm, much smaller than the hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of low-energy dynamics based on chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (chiral quark-soliton model). The calculated distributions of constituent quarks/antiquarks are matched with QCD partons at the scale rho^{-2}. The p_T distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The sea quark distribution exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Such behavior is seen in the flavor-singlet unpolarized and nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, analogous to NN correlations in nuclei. The nucleon wave function contains correlated pairs of transverse size rho << R with sigma- and pi-like quantum numbers, whose internal wave functions become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the P_T distributions of particles produced in hard scattering processes. The nonperturbative parton correlations predicted here could be observed in particle correlations between the current and target fragmentation regions of DIS.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Instantons in QCD

          We review the theory and phenomenology of instantons in QCD. After a general overview, we provide a pedagogical introduction to semi-classical methods in quantum mechanics and field theory. The main part of the review summarizes our understanding of the instanton liquid in QCD and the role of instantons in generating the spectrum of light hadrons. We also discuss properties of instantons at finite temperature and the chiral phase transition. We give an overview over the importance of instantons in some other models, in particular two dimensional sigma models, electroweak theory and supersymmetric QCD.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Single transverse spin asymmetries

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Universality of soft and collinear factors in hard-scattering factorization

              Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with factorization and that gives universality between e^+e^- annihilation, semi-inclusive deep-inelastic scattering, and the Drell-Yan process. Universality is only modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan and the other processes, whose only effect is the known reversal of sign for T-odd parton densities like the Sivers function. The modifications of the definitions needed to remove rapidity divergences with light-like Wilson lines do not affect the results.
                Bookmark

                Author and article information

                Journal
                03 October 2012
                Article
                10.1007/JHEP01(2013)163
                1210.1267
                27407431-95e8-451f-8bd7-d01e9e4dc3e3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                JLAB-THY-12-1641
                46 pages, 20 figures
                hep-ph

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content239

                Cited by6

                Most referenced authors135