6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Auricular Vagus Nerve Stimulation Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Neutrophil Infiltration and Neutrophil Extracellular Traps Formation

      1 , 2 , 3
      Shock
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT

          Vagus nerve stimulation has been shown to exert anti-inflammation activities in sepsis. However, surgical implantation of stimulation devices is performed under general anesthesia, which limits its clinical application. Auricular vagus nerve stimulation (AVNS) is a minimal invasive technique that delivers electrical currents to the auricular branch of the vagus nerve. The purpose of this study was to determine the effects of AVNS on systemic inflammation, lung injury, neutrophil infiltration, and neutrophil extracellular traps (NETs) formation in the lung. In a LPS challenge lung-injury mice model, AVNS was applied to bilateral ears. Twelve hours after LPS administration, samples of blood, bronchoalveolar lavage fluid (BALF), and lung tissues were processed for investigations. We found that the treatment with AVNS significantly attenuated histopathological changes and neutrophil infiltration in the lung tissue, inhibited inflammatory cytokine elevations in serum and BALF, and decreased protein concentrations in BALF. Besides, AVNS decreased leukocyte and neutrophil accounts in BALF. Furthermore, colocalization of citrullination of histone H3 and myeloperoxidase expressions (highly specific marker of NETs) was reduced in AVNS mice. In conclusion, AVNS reduced systemic inflammation, attenuated lung edema, and inhibited neutrophil infiltration and NETs formation in the lung in LPS mice.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals.

          Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.

            Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1beta, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammatory reflex.

              Inflammation is a local, protective response to microbial invasion or injury. It must be fine-tuned and regulated precisely, because deficiencies or excesses of the inflammatory response cause morbidity and shorten lifespan. The discovery that cholinergic neurons inhibit acute inflammation has qualitatively expanded our understanding of how the nervous system modulates immune responses. The nervous system reflexively regulates the inflammatory response in real time, just as it controls heart rate and other vital functions. The opportunity now exists to apply this insight to the treatment of inflammation through selective and reversible 'hard-wired' neural systems.
                Bookmark

                Author and article information

                Journal
                Shock
                Ovid Technologies (Wolters Kluwer Health)
                1073-2322
                1540-0514
                2022
                March 2022
                September 03 2021
                : 57
                : 3
                : 427-434
                Affiliations
                [1 ]Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
                [2 ]Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
                [3 ]Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
                Article
                10.1097/SHK.0000000000001855
                97e97ff3-f82a-4dd2-8a21-72daa2dc9b9f
                © 2021
                History

                Comments

                Comment on this article