1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Air-permeable cellulosic triboelectric materials for self-powered healthcare products

      , , , , , , , , , ,
      Nano Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Flexible triboelectric generator

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system.

              We report human skin based triboelectric nanogenerators (TENG) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology. We constructed a TENG utilizing the contact/separation between an area of human skin and a polydimethylsiloxane (PDMS) film with a surface of micropyramid structures, which was attached to an ITO electrode that was grounded across a loading resistor. The fabricated TENG delivers an open-circuit voltage up to -1000 V, a short-circuit current density of 8 mA/m(2), and a power density of 500 mW/m(2) on a load of 100 MΩ, which can be used to directly drive tens of green light-emitting diodes. The working mechanism of the TENG is based on the charge transfer between the ITO electrode and ground via modulating the separation distance between the tribo-charged skin patch and PDMS film. Furthermore, the TENG has been used in designing an independently addressed matrix for tracking the location and pressure of human touch. The fabricated matrix has demonstrated its self-powered and high-resolution tactile sensing capabilities by recording the output voltage signals as a mapping figure, where the detection sensitivity of the pressure is about 0.29 ± 0.02 V/kPa and each pixel can have a size of 3 mm × 3 mm. The TENGs may have potential applications in human-machine interfacing, micro/nano-electromechanical systems, and touch pad technology.
                Bookmark

                Author and article information

                Journal
                Nano Energy
                Nano Energy
                Elsevier BV
                22112855
                November 2022
                November 2022
                : 102
                : 107739
                Article
                10.1016/j.nanoen.2022.107739
                976af0f3-a801-4bec-8030-9804ed237577
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article