112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins

      review-article
      1 , 2 , *
      International Journal of Cell Biology
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell adhesion molecules play a significant role in cancer progression and metastasis. Cell-cell interactions of cancer cells with endothelium determine the metastatic spread. In addition, direct tumor cell interactions with platelets, leukocytes, and soluble components significantly contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Clinical evidence indicates that heparin, commonly used for treatment of thromboembolic events in cancer patients, is beneficial for their survival. Preclinical studies confirm that heparin possesses antimetastatic activities that lead to attenuation of metastasis in various animal models. Heparin contains several biological activities that may affect several steps in metastatic cascade. Here we focus on the role of cellular adhesion receptors in the metastatic cascade and discuss evidence for heparin as an inhibitor of cell adhesion. While P- and L-selectin facilitation of cellular contacts during hematogenous metastasis is being accepted as a potential target of heparin, here we propose that heparin may also interfere with integrin activity and thereby affect cancer progression. This review summarizes recent findings about potential mechanisms of tumor cell interactions in the vasculature and antimetastatic activities of heparin.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Adhesion signaling - crosstalk between integrins, Src and Rho.

          Interactions between cells and the extracellular matrix coordinate signaling pathways that control various aspects of cellular behavior. Integrins sense the physical properties of the extracellular matrix and organize the cytoskeleton accordingly. In turn, this modulates signaling pathways that are triggered by various other transmembrane receptors and augments the cellular response to growth factors. Over the past years, it has become clear that there is extensive crosstalk between integrins, Src-family kinases and Rho-family GTPases at the heart of such adhesion signaling. In this Commentary, we discuss recent advances in our understanding of the dynamic regulation of the molecular connections between these three protein families. We also discuss how this signaling network can regulate a range of cellular processes that are important for normal tissue function and disease, including cell adhesion, spreading, migration and mechanotransduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment.

            Signals from the microenvironment have a profound influence on the maintenance and/or progression of hematopoietic and epithelial cancers. Mesenchymal or marrow-derived stromal cells, which constitute a large proportion of the non-neoplastic cells within the tumor microenvironment, constitutively secrete the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). CXCL12 secretion by stromal cells attracts cancer cells, acting through its cognate receptor, CXCR4, which is expressed by both hematopoietic and nonhematopoietic tumor cells. CXCR4 promotes tumor progression by direct and indirect mechanisms. First, CXCR4 is essential for metastatic spread to organs where CXCL12 is expressed, and thereby allows tumor cells to access cellular niches, such as the marrow, that favor tumor-cell survival and growth. Second, stromal-derived CXCL12 itself can stimulate survival and growth of neoplastic cells in a paracrine fashion. Third, CXCL12 can promote tumor angiogenesis by attracting endothelial cells to the tumor microenvironment. CXCR4 expression is a prognostic marker in various types of cancer, such as acute myelogenous leukemia or breast carcinoma. Promising results in preclinical tumor models indicate that CXCR4 antagonists may have antitumor activity in patients with various malignancies. Collectively, these observations reveal that CXCR4 is an important molecule involved in the spread and progression of a variety of different tumors. As such, CXCR4 antagonists, although initially developed for treatment of AIDS, actually may become effective agents for the treatment of neoplastic disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrins in angiogenesis and lymphangiogenesis.

              Blood vessels promote tumour growth, and both blood and lymphatic vessels facilitate tumour metastasis by serving as conduits for the transport of tumour cells to new sites. Angiogenesis and lymphangiogenesis are regulated by integrins, which are members of a family of cell surface receptors whose ligands are extracellular matrix proteins and immunoglobulin superfamily molecules. Select integrins promote endothelial cell migration and survival during angiogenesis and lymphangiogenesis, whereas other integrins promote pro-angiogenic macrophage trafficking to tumours. Several integrin-targeted therapeutic agents are currently in clinical trials for cancer therapy. Here, we review the evidence implicating integrins as a family of fundamental regulators of angiogenesis and lymphangiogenesis.
                Bookmark

                Author and article information

                Journal
                Int J Cell Biol
                IJCB
                International Journal of Cell Biology
                Hindawi Publishing Corporation
                1687-8876
                1687-8884
                2012
                12 February 2012
                : 2012
                : 676731
                Affiliations
                1Department of Pharmaceutical Chemistry, University of Bonn, 53121 Bonn, Germany
                2Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, 8057 Zürich, Switzerland
                Author notes

                Academic Editor: Martin Gotte

                Article
                10.1155/2012/676731
                3296185
                22505933
                96e31913-b0a1-4973-adcc-9a117c7f8cd3
                Copyright © 2012 G. Bendas and L. Borsig.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 October 2011
                : 21 November 2011
                Categories
                Review Article

                Cell biology
                Cell biology

                Comments

                Comment on this article