0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tetramethylpyrazine alleviates mitochondrial abnormality in models of cerebral ischemia and oxygen/glucose deprivation Reoxygenation

      , , , , , , , ,
      Experimental Neurology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Global Burden of Stroke.

          Stroke is the second leading cause of death and a major cause of disability worldwide. Its incidence is increasing because the population ages. In addition, more young people are affected by stroke in low- and middle-income countries. Ischemic stroke is more frequent but hemorrhagic stroke is responsible for more deaths and disability-adjusted life-years lost. Incidence and mortality of stroke differ between countries, geographical regions, and ethnic groups. In high-income countries mainly, improvements in prevention, acute treatment, and neurorehabilitation have led to a substantial decrease in the burden of stroke over the past 30 years. This article reviews the epidemiological and clinical data concerning stroke incidence and burden around the globe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current Mechanistic Concepts in Ischemia and Reperfusion Injury.

            Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury

              Background Nod-like receptor protein 3 (NLRP3) inflammasome is a crucial factor in mediating inflammatory responses after cerebral ischemia/reperfusion (I/R), but the cellular location of NLRP3 inflammasome in cerebral I/R has yet come to a conclusion, and there is still no specific evidence to state the relationship between mitochondria and the NLRP3 inflammasome in cerebral I/R. Methods In the present study, we detected the cellular localization of NLRP3 inflammasomes in a transient middle cerebral artery occlusion (tMCAO) rat model and a transwell co-culture cell system under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Then, we investigated the relationship between mitochondrial dysfunction and the activation of NLRP3 inflammasomes in different cell types after OGD/R and cerebral I/R injury. Results Our results showed that NLRP3 inflammasomes were first activated in microglia soon after cerebral I/R injury onset and then were expressed in neurons and microvascular endothelial cells later, but they were mainly in neurons. Furthermore, mitochondrial dysfunction played an important role in activating NLRP3 inflammasomes in microglia after OGD/R, and mitochondrial protector could inhibit the activation of NLRP3 inflammasomes in cerebral I/R rats. Conclusion Our findings may provide novel insights into the cell type-dependent activation of NLRP3 inflammasomes at different stages of cerebral I/R injury and the role of mitochondrial dysfunction in activating the NLRP3 inflammasome pathway. Electronic supplementary material The online version of this article (10.1186/s12974-018-1282-6) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Experimental Neurology
                Experimental Neurology
                Elsevier BV
                00144886
                September 2023
                September 2023
                : 367
                : 114468
                Article
                10.1016/j.expneurol.2023.114468
                37307890
                96a6eeb0-daab-46c3-8c98-28f94536b2bb
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article