26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CXCL9 and CXCL10 accelerate acute transplant rejection mediated by alloreactive memory T cells in a mouse retransplantation model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 play key roles in the initiation and development of acute transplant rejection. Previously, higher levels of RANTES expression and secretion were demonstrated in retransplantation or T-cell memory-transfer models. In the present study, the effect of the chemokines, CXCL9 and CXCL10, were investigated in a mouse retransplantation model. BALB/c mice were used as donors, while C57BL/6 mice were used as recipients. In the experimental groups, a heterotopic heart transplantation was performed six weeks following skin grafting. In the control groups, a heterotopic heart transplantation was performed without skin grafting. Untreated mice served as blank controls. The mean graft survival time of the heterotopic heart transplantations was 7.7 days in the experimental group (n=6), as compared with 3.25 days in the control group (n=6; P<0.001). On day three following cardiac transplantation, histological evaluation of the grafts revealed a higher International Society for Heart & Lung Transplantation grade in the experimental group as compared with the control group. In addition, gene expression and serum concentrations of CXCL9, CXCL10, interferon-γ, and interleukin-2 were markedly higher in the experimental group when compared with the control group. Differences between the levels of CXCL9 and CXCL10 in the pre- and post-transplant mice indicated that the chemokines may serve as possible biomarkers to predict acute rejection. The results of the present study demonstrated that CXCL9 and CXCL10 play a critical role in transplantation and retransplantation. High levels of these cytokines during the pre-transplant period may lead to extensive acute rejection. Thus, the observations enhance the understanding of the mechanism underlying the increased expression and secretion of CXCL9 and CXCL10 by alloreactive memory T cells.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in thymic function with age and during the treatment of HIV infection.

          The thymus represents the major site of the production and generation of T cells expressing alphabeta-type T-cell antigen receptors. Age-related involution may affect the ability of the thymus to reconstitute T cells expressing CD4 cell-surface antigens that are lost during HIV infection; this effect has been seen after chemotherapy and bone-marrow transplantation. Adult HIV-infected patients treated with highly active antiretroviral therapy (HAART) show a progressive increase in their number of naive CD4-positive T cells. These cells could arise through expansion of existing naive T cells in the periphery or through thymic production of new naive T cells. Here we quantify thymic output by measuring the excisional DNA products of TCR-gene rearrangement. We find that, although thymic function declines with age, substantial output is maintained into late adulthood. HIV infection leads to a decrease in thymic function that can be measured in the peripheral blood and lymphoid tissues. In adults treated with HAART, there is a rapid and sustained increase in thymic output in most subjects. These results indicate that the adult thymus can contribute to immune reconstitution following HAART.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Donor-Derived Ip-10 Initiates Development of Acute Allograft Rejection

              An allograft is often considered an immunologically inert playing field on which host leukocytes assemble and wreak havoc. However, we demonstrate that graft-specific physiologic responses to early injury initiate and promulgate destruction of vascularized grafts. Serial analysis of allografts showed that intragraft expression of the three chemokine ligands for the CXC chemo-kine receptor CXCR3 was induced in the order of interferon (IFN)-γ–inducible protein of 10 kD (IP-10, or CXCL10), IFN-inducible T cell α-chemoattractant (I-TAC; CXCL11), and then monokine induced by IFN-γ (Mig, CXCL9). Initial IP-10 production was localized to endothelial cells, and only IP-10 was induced by isografting. Anti–IP-10 monoclonal antibodies prolonged allograft survival, but surprisingly, IP-10–deficient (IP-10−/−) mice acutely rejected allografts. However, though allografts from IP-10+/+ mice were rejected by day 7, hearts from IP-10−/− mice survived long term. Compared with IP-10+/+ donors, use of IP-10−/− donors reduced intragraft expression of cytokines, chemokines and their receptors, and associated leukocyte infiltration and graft injury. Hence, tissue-specific generation of a single chemokine in response to initial ischemia/reperfusion can initiate progressive graft infiltration and amplification of multiple effector pathways, and targeting of this proximal chemokine can prevent acute rejection. These data emphasize the pivotal role of donor-derived IP-10 in initiating alloresponses, with implications for tissue engineering to decrease immunogenicity, and demonstrate that chemokine redundancy may not be operative in vivo.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                July 2014
                14 May 2014
                14 May 2014
                : 8
                : 1
                : 237-242
                Affiliations
                [1 ]Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
                [2 ]Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
                Author notes
                Correspondence to: Mr. Zhonggui Shan, Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, Fujian 361003, P.R. China, E-mail: szgdoctor@ 123456126.com
                Article
                etm-08-01-0237
                10.3892/etm.2014.1714
                4061216
                24944628
                96833228-e0cc-45d0-a68e-7671eebdb3ad
                Copyright © 2014, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 23 December 2013
                : 02 May 2014
                Categories
                Articles

                Medicine
                c-x-c motif chemokine ligand 9,c-x-c motif chemokine ligand 10,retransplantation,memory t cells,heart transplantation

                Comments

                Comment on this article