13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants

      , , ,
      Advances in Colloid and Interface Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biosurfactants production, applications and future potential.

          Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiseptics and Disinfectants: Activity, Action, and Resistance

            Antiseptics and disinfectants are extensively used in hospitals and other health care settings for a variety of topical and hard-surface applications. A wide variety of active chemical agents (biocides) are found in these products, many of which have been used for hundreds of years, including alcohols, phenols, iodine, and chlorine. Most of these active agents demonstrate broad-spectrum antimicrobial activity; however, little is known about the mode of action of these agents in comparison to antibiotics. This review considers what is known about the mode of action and spectrum of activity of antiseptics and disinfectants. The widespread use of these products has prompted some speculation on the development of microbial resistance, in particular whether antibiotic resistance is induced by antiseptics or disinfectants. Known mechanisms of microbial resistance (both intrinsic and acquired) to biocides are reviewed, with emphasis on the clinical implications of these reports.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological activities and distribution of plant saponins.

              Plant saponins are widely distributed amongst plants and have a wide range of biological properties. The more recent investigations and findings into their biological activities were summarized. Isolation studies of saponins were examined to determine which are the more commonly studied plant families and in which families saponins have been identified.
                Bookmark

                Author and article information

                Journal
                Advances in Colloid and Interface Science
                Advances in Colloid and Interface Science
                Elsevier BV
                00018686
                February 2021
                February 2021
                : 288
                : 102340
                Article
                10.1016/j.cis.2020.102340
                33383470
                9624f40f-6f75-47bc-aaf6-5241b683d81f
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article