6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MALAT1/miR-15b-5p/ MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Present study focused on the influence of lncRNA MALAT1 on coronary atherosclerotic heart disease (CAD) by regulating miR-15b-5p/ MAPK1 and mTOR signaling pathway.

          Method: Differentially expressed genes and activated pathway were investigated through bioinformatics analysis. QRT-PCR was conducted to verify expression of MALAT1, miR-15b-5p and MAPK1 in CAD blood samples and endothelial progenitor cells (EPCs). In addition, the interactions among MALAT1, miR-15b-5p and MAPK1 were revealed by Luciferase reporter assay. Cell autophagy of EPCs was examined by Cyto-ID Autophagy Detection Kit and transmission electron microscope. MTT assay and flow cytometry were carried out to assess cell viability and apoptosis in different interference conditions. Western blot was performed to testify the expression of pERK1/2 (MAPK1), phosphorylated mTOR, ATG1 and LC3-II. Vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by qRT-PCR. Finally, the effect of lncRNA MALAT1 on cell autophagy and atherogenesis was tested in vivo.

          Results: MALAT1 was overexpressed in CAD blood samples and EPCs. Knockdown of MALAT1 and MAPK1 promoted cell viability, autophagy and further suppressed the development of CAD. Antago MALAT1 protects mice against atherosclerosis.

          Conclusion: LncRNA MALAT1 inhibited EPCs autophagy and increased cell viability while repressed apoptosis of CAD via activating mTOR signaling pathway.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          TOR, a Central Controller of Cell Growth

          Cell, 103(2), 253-262
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription

            Increasing evidence suggests that long noncoding RNAs (lncRNAs) play crucial roles in various biological processes. However, little is known about the effects of lncRNAs on autophagy. Here we report that a lncRNA, termed cardiac autophagy inhibitory factor (CAIF), suppresses cardiac autophagy and attenuates myocardial infarction by targeting p53-mediated myocardin transcription. Myocardin expression is upregulated upon H2O2 and ischemia/reperfusion, and knockdown of myocardin inhibits autophagy and attenuates myocardial infarction. p53 regulates cardiomyocytes autophagy and myocardial ischemia/reperfusion injury by regulating myocardin expression. CAIF directly binds to p53 protein and blocks p53-mediated myocardin transcription, which results in the decrease of myocardin expression. Collectively, our data reveal a novel CAIF-p53-myocardin axis as a critical regulator in cardiomyocyte autophagy, which will be potential therapeutic targets in treatment of defective autophagy-associated cardiovascular diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MALAT-1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis.

              The human metastasis associated lung adenocarcinoma transcript 1 (MALAT-1) as a long non-coding RNA known to be misregulated in many people who are detected with cancer. Our earlier studies found that MALAT-1 plays a pivotal role in colorectal cancer (CRC) metastasis. In this study, we analyzed the MALAT-1 gene in five fragments. We employed the sequencing process to identify MALAT-1 mutations in the following types of samples: CRC cells (SW620, SW480), normal colorectal tissues, and primary CRC tissues. We were successful in detecting the following mutations: fragment 5434 nt-6951 nt of the MALAT-1 was mutated in SW620 cells, while fragments 5434 nt-6951 nt and 6918 nt-8441 nt of MALAT-1 were mutated in SW480 cancer cells and primary CRC tissues. We over-expressed five fragments of MALAT-1 in the CRC cell line SW480; simultaneously ensuring that MALAT-1 had low expression. Our data illustrated that one of the 5 fragments (6918 nt-8441 nt) located at the 3' end of MALAT-1 plays a pivotal role in the biological processes of cell proliferation, migration and invasion. Based on these observations, we can infer that the 3' end of MALAT-1 is an important biological motif in the invasion and metastasis of CRC cells. We have successfully presented the first evidence that mutations were found on the long non-coding RNA MALAT-1 in CRC. Moreover, long non-coding RNA MALAT-1 has an important biological motif located at the 3' end of MALAT-1 (6918 nt-8441 nt) in CRC. Our study gives a new direction to research primarily focused on exploring the molecular mechanisms occurring during the invasion and metastasis of CRC.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                28 February 2019
                21 February 2019
                : 11
                : 4
                : 1089-1109
                Affiliations
                1 Department of Geriatric & General Practice, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
                * Equal contribution
                Author notes
                Correspondence to: Tong Zhang; email: zhigangliu195910@ 123456126.com
                Article
                101766
                10.18632/aging.101766
                6402525
                30787203
                96023266-db26-4a65-8d07-5aa385e61a96
                Copyright: © 2019 Zhu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 October 2018
                : 05 January 2019
                Categories
                Research Paper

                Cell biology
                cad,malat1,mir-15b-5p,mapk1,mtor signaling pathway
                Cell biology
                cad, malat1, mir-15b-5p, mapk1, mtor signaling pathway

                Comments

                Comment on this article