6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differently Charged P (VDF-TrFE) Membranes Influence Osteogenesis Through Differential Immunomodulatory Function of Macrophages

      , , , , , , , ,
      Frontiers in Materials
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A biomaterial-mediated immune response is a critical factor to determine the cell fate as well as the tissue-regenerative outcome. Although piezoelectric-membranes have attracted considerable interest in the field of guided bone regeneration thanks to their biomimetic electroactivity, the influence of their different surface-charge polarities on the immune-osteogenic microenvironment remains obscure. The present study aimed at investigating the interaction between piezoelectric poly (vinylidene fluoridetrifluoroethylene) [P (VDF-TrFE)] membranes with different surface polarities (negative or positive) and macrophage response, as well as their subsequent influence on osteogenesis from an immunomodulating perspective. Specifically, the morphology, wettability, crystal phase, piezoelectric performance, and surface potential of the synthetic P (VDF-TrFE) samples were systematically characterized. In addition, RAW 264.7 macrophages were seeded onto differently charged P (VDF-TrFE) surfaces, and the culture supernatants were used to supplement cultures of rat bone marrow mesenchymal stem cells (rBMSCs) on the corresponding P (VDF-TrFE) surfaces. Our results revealed that oppositely charged surfaces had different abilities in modulating the macrophage-immune-osteogenic microenvironment. Negatively charged P (VDF-TrFE), characterized by the highest macrophage elongation effect, induced a switch in the phenotype of macrophages from M0 (inactivated) to M2 (anti-inflammatory), thus promoting the osteogenic differentiation of rBMSCs by releasing anti-inflammatory cytokine IL-10. Interestingly, positively charged P (VDF-TrFE) possessed pro-inflammatory properties to induce an M1 (pro-inflammatory) macrophage-dominated reaction, without compromising the subsequent osteogenesis as expected. In conclusion, these findings highlighted the distinct modulatory effect of piezoelectric-P (VDF-TrFE) membranes on the macrophage phenotype, inflammatory reaction, and consequent immune-osteogenic microenvironment depending on their surface-charge polarity. This study provides significant insight into the design of effective immunoregulatory materials for the guided bone regeneration application.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of macrophage phenotype by cell shape.

          Phenotypic polarization of macrophages is regulated by a milieu of cues in the local tissue microenvironment. Although much is known about how soluble factors influence macrophage polarization, relatively little is known about how physical cues present in the extracellular environment might modulate proinflammatory (M1) vs. prohealing (M2) activation. Specifically, the role of cell shape has not been explored, even though it has been observed that macrophages adopt different geometries in vivo. We and others observed that macrophages polarized toward different phenotypes in vitro exhibit dramatic changes in cell shape: M2 cells exhibit an elongated shape compared with M1 cells. Using a micropatterning approach to control macrophage cell shape directly, we demonstrate here that elongation itself, without exogenous cytokines, leads to the expression of M2 phenotype markers and reduces the secretion of inflammatory cytokines. Moreover, elongation enhances the effects of M2-inducing cytokines IL-4 and IL-13 and protects cells from M1-inducing stimuli LPS and IFN-γ. In addition shape- but not cytokine-induced polarization is abrogated when actin and actin/myosin contractility are inhibited by pharmacological agents, suggesting a role for the cytoskeleton in the control of macrophage polarization by cell geometry. Our studies demonstrate that alterations in cell shape associated with changes in ECM architecture may provide integral cues to modulate macrophage phenotype polarization.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Integrins: a family of cell surface receptors.

            R O Hynes (1987)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Titanium surface characteristics, including topography and wettability, alter macrophage activation.

              Biomaterial surface properties including chemistry, topography, and wettability regulate cell response. Previous studies have shown that increasing surface roughness of metallic orthopaedic and dental implants improved bone formation around the implant. Little is known about how implant surface properties can affect immune cells that generate a wound healing microenvironment. The aim of our study was to examine the effect of surface modifications on macrophage activation and cytokine production. Macrophages were cultured on seven surfaces: tissue culture polystyrene (TCPS) control; hydrophobic and hydrophilic smooth Ti (PT and oxygen-plasma-treated (plasma) PT); hydrophobic and hydrophilic microrough Ti (SLA and plasma SLA), and hydrophobic and hydrophilic nano-and micro-rough Ti (aged modSLA and modSLA). Smooth Ti induced inflammatory macrophage (M1-like) activation, as indicated by increased levels of interleukins IL-1β, IL-6, and TNFα. In contrast, hydrophilic rough titanium induced macrophage activation similar to the anti-inflammatory M2-like state, increasing levels of interleukins IL-4 and IL-10. These results demonstrate that macrophages cultured on high surface wettability materials produce an anti-inflammatory microenvironment, and this property may be used to improve the healing response to biomaterials.
                Bookmark

                Author and article information

                Journal
                Frontiers in Materials
                Front. Mater.
                Frontiers Media SA
                2296-8016
                January 5 2022
                January 5 2022
                : 8
                Article
                10.3389/fmats.2021.790753
                95dbf123-ffd8-4d70-8d60-fb6c93515e8d
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article