12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contact-Lens Biosensors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid diagnosis and screening of diseases have become increasingly important in predictive and preventive medicine as they improve patient treatment strategies and reduce cost as well as burden on our healthcare system. In this regard, wearable devices are emerging as effective and reliable point-of-care diagnostics that can allow users to monitor their health at home. These wrist-worn, head-mounted, smart-textile, or smart-patches devices can offer valuable information on the conditions of patients as a non-invasive form of monitoring. However, they are significantly limited in monitoring physiological signals and biomechanics, and, mostly, rely on the physical attributes. Recently, developed wearable devices utilize body fluids, such as sweat, saliva, or skin interstitial fluid, and electrochemical interactions to allow continuous physiological condition and disease monitoring for users. Among them, tear fluid has been widely utilized in the investigation of ocular diseases, diabetes, and even cancers, because of its easy accessibility, lower complexity, and minimal invasiveness. By determining the concentration change of analytes within the tear fluid, it would be possible to identify disease progression and allow patient-oriented therapies. Considering the emerging trend of tear-based biosensing technology, this review article aims to focus on an overview of the tear fluid as a detection medium for certain diseases, such as ocular disorders, diabetes, and cancer. In addition, the rise and application of minimally invasive detection and monitoring via integrated contact lens biosensors will also be addressed, in regards to their practicality and current developmental progress.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.

          To produce current estimates of the national, regional and global impact of diabetes for 2015 and 2040.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics

            Wearable contact lenses which can monitor physiological parameters have attracted substantial interests due to the capability of direct detection of biomarkers contained in body fluids. However, previously reported contact lens sensors can only monitor a single analyte at a time. Furthermore, such ocular contact lenses generally obstruct the field of vision of the subject. Here, we developed a multifunctional contact lens sensor that alleviates some of these limitations since it was developed on an actual ocular contact lens. It was also designed to monitor glucose within tears, as well as intraocular pressure using the resistance and capacitance of the electronic device. Furthermore, in-vivo and in-vitro tests using a live rabbit and bovine eyeball demonstrated its reliable operation. Our developed contact lens sensor can measure the glucose level in tear fluid and intraocular pressure simultaneously but yet independently based on different electrical responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

              Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                13 August 2018
                August 2018
                : 18
                : 8
                : 2651
                Affiliations
                [1 ]Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan; tsengryan@ 123456gmail.com (R.C.T.); st86481234@ 123456gmail.com (C.-C.C.)
                [2 ]Department of Ophthalmology, National Cheng Kung University Hospital, Tainan City 704, Taiwan; shengmin@ 123456mail.ncku.edu.tw
                [3 ]Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
                Author notes
                Author information
                https://orcid.org/0000-0002-7257-6565
                Article
                sensors-18-02651
                10.3390/s18082651
                6111605
                30104496
                959ed80c-e43e-4e3e-8918-4be6e3853d6f
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 July 2018
                : 10 August 2018
                Categories
                Review

                Biomedical engineering
                biosensor,biomarker,contact lens,wearable device,tear
                Biomedical engineering
                biosensor, biomarker, contact lens, wearable device, tear

                Comments

                Comment on this article