146
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subsets of regulatory T cells and their roles in allergy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, it is recognized that acquired immunity is controlled by regulatory T cell (Treg). Since fundamental pathophysiological changes of allergy are mainly caused by hyperresponsiveness of immune system to allergens that acquires after birth, Tregs likely play key roles in the pathogenesis of allergy, particularly during the sensitization phase. However, accumulated information indicate that there are several distinctive subtypes of Tregs in man, and each of them seems to play different role in controlling immune system, which complicates the involvement of Tregs in allergy. The aim of the present study is to attempt to classify subtypes of Tregs and summarize their roles in allergy. Tregs should include natural Tregs (nTreg) including inducible costimulator (ICOS)(+) Tregs, inducible/adaptive Tregs (iTreg), interleukin (IL)-10-producing type 1 Tregs (Tr1 cells), CD8(+) Tregs and IL-17-producing Tregs. These cells share some common features including expression of Foxp3 (except for Tr1 cells), and secretion of inhibitory cytokine IL-10 and/or TGF-β. Furthermore, it is noticeable that Tregs likely contribute to allergic disorders such as dermatitis and airway inflammation, and play a crucial role in the treatment of allergy through their actions on suppression of effector T cells and inhibition of activation of mast cells and basophils. Modulation of functions of Tregs may provide a novel strategy to prevent and treat allergic diseases.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation.

          TGF-beta1 is a regulatory cytokine with a pleiotropic role in immune responses. TGF-beta1 is widely expressed in leukocytes and stromal cells. However, the functions of TGF-beta1 expressed by specific lineages of cells remain unknown in vivo. Here, we show that mice with a T cell-specific deletion of the Tgfb1 gene developed lethal immunopathology in multiple organs, and this development was associated with enhanced T cell proliferation, activation, and CD4+ T cell differentiation into T helper 1 (Th1) and Th2 cells. TGF-beta1 produced by Foxp3-expressing regulatory T cells was required to inhibit Th1-cell differentiation and inflammatory-bowel disease in a transfer model. In addition, T cell-produced TGF-beta1 promoted Th17-cell differentiation and was indispensable for the induction of experimental autoimmune encephalomyelitis. These findings reveal essential roles for T cell-produced TGF-beta1 in controlling differentiation of T helper cells and controlling inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin.

            Lactobacilli are probiotic bacteria that are frequently tested in the management of allergic diseases or gastroenteritis. It is hypothesized that these probiotics have immunoregulatory properties and promote mucosal tolerance, which is in part mediated by regulatory T cells (Treg cells). On the basis of pathogenic or tissue-specific priming, dendritic cells (DC) acquire different T cell-instructive signals and drive the differentiation of naive T H cells into either T H 1, T H 2, or regulatory effector T cells. We studied in what way different species of lactobacilli prime human DCs for their ability to drive Treg cells. Human monocyte-derived DCs were cultured in vitro with lactobacilli of different species. Two different species of lactobacilli, Lactobacillus reuteri and Lactobacillus casei , but not Lactobacillus plantarum, prime monocyte-derived DCs to drive the development of Treg cells. These Treg cells produced increased levels of IL-10 and were capable of inhibiting the proliferation of bystander T cells in an IL-10-dependent fashion. Strikingly, both L reuteri and L casei , but not L plantarum , bind the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Blocking antibodies to DC-SIGN inhibited the induction of the Treg cells by these probiotic bacteria, stressing that ligation of DC-SIGN can actively prime DCs to induce Treg cells. The targeting of DC-SIGN by certain probiotic bacteria might explain their beneficial effect in the treatment of a number of inflammatory diseases, including atopic dermatitis and Crohn's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells.

              Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correlation between H. pylori and asthma. H. pylori infection efficiently protected mice from airway hyperresponsiveness, tissue inflammation, and goblet cell metaplasia, which are hallmarks of asthma, and prevented allergen-induced pulmonary and bronchoalveolar infiltration with eosinophils, Th2 cells, and Th17 cells. Protection against asthma was most robust in mice infected neonatally and was abrogated by antibiotic eradication of H. pylori. Asthma protection was further associated with impaired maturation of lung-infiltrating dendritic cells and the accumulation of highly suppressive Tregs in the lungs. Systemic Treg depletion abolished asthma protection; conversely, the adoptive transfer of purified Treg populations was sufficient to transfer protection from infected donor mice to uninfected recipients. Our results thus provide experimental evidence for a beneficial effect of H. pylori colonization on the development of allergen-induced asthma.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central
                1479-5876
                2014
                12 May 2014
                : 12
                : 125
                Affiliations
                [1 ]Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121001, People’s Republic of China
                [2 ]Central Laboratory, Suzhou Xiangcheng People’s Hospital, Suzhou 215131, China
                [3 ]Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
                Article
                1479-5876-12-125
                10.1186/1479-5876-12-125
                4023533
                24886492
                9595df9a-89a8-4be1-923a-3e0998e4d0e1
                Copyright © 2014 Zhang et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 February 2014
                : 28 March 2014
                Categories
                Review

                Medicine
                regulatory t cell,allergy,il-10,tgf-β,mast cell
                Medicine
                regulatory t cell, allergy, il-10, tgf-β, mast cell

                Comments

                Comment on this article

                scite_
                135
                3
                103
                0
                Smart Citations
                135
                3
                103
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,159

                Cited by50

                Most referenced authors840