13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular Vesicles Mediate Mesenchymal Stromal Cell-Dependent Regulation of B Cell PI3K-AKT Signaling Pathway and Actin Cytoskeleton

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stromal cells (MSCs) are adult, multipotent cells of mesodermal origin representing the progenitors of all stromal tissues. MSCs possess significant and broad immunomodulatory functions affecting both adaptive and innate immune responses once MSCs are primed by the inflammatory microenvironment. Recently, the role of extracellular vesicles (EVs) in mediating the therapeutic effects of MSCs has been recognized. Nevertheless, the molecular mechanisms responsible for the immunomodulatory properties of MSC-derived EVs (MSC-EVs) are still poorly characterized. Therefore, we carried out a molecular characterization of MSC-EV content by high-throughput approaches. We analyzed miRNA and protein expression profile in cellular and vesicular compartments both in normal and inflammatory conditions. We found several proteins and miRNAs involved in immunological processes, such as MOES, LG3BP, PTX3, and S10A6 proteins, miR-155-5p, and miR-497-5p. Different in silico approaches were also performed to correlate miRNA and protein expression profile and then to evaluate the putative molecules or pathways involved in immunoregulatory properties mediated by MSC-EVs. PI3K-AKT signaling pathway and the regulation of actin cytoskeleton were identified and functionally validated in vitro as key mediators of MSC/B cell communication mediated by MSC-EVs. In conclusion, we identified different molecules and pathways responsible for immunoregulatory properties mediated by MSC-EVs, thus identifying novel therapeutic targets as safer and more useful alternatives to cell or EV-based therapeutic approaches.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes.

          Sera of patients with cancer contain membraneous microvesicles (MV) able to induce apoptosis of activated T cells by activating the Fas/Fas ligand pathway. However, the cellular origin of MV found in cancer patients' sera varies as do their molecular and cellular profiles. To distinguish tumor-derived MV in cancer patients' sera, we used MAGE 3/6(+) present in tumors and MV. Molecular profiles of MAGE 3/6(+) MV were compared in Western blots or by flow cytometry with those of MV secreted by dendritic cells or activated T cells. These profiles were found to be distinct for each cell type. Only tumor-derived MV were MAGE 3/6(+) and were variably enriched in 42-kDa Fas ligand and MHC class I but not class II molecules. Effects of MV on signaling via the TCR and IL-2R and proliferation or apoptosis of activated primary T cells and T cell subsets were also assessed. Functions of activated CD8(+) and CD4(+) T lymphocytes were differentially modulated by tumor-derived MV. These MV inhibited signaling and proliferation of activated CD8(+) but not CD4(+) T cells and induced apoptosis of CD8(+) T cells, including tumor-reactive, tetramer(+)CD8(+) T cells as detected by flow cytometry for caspase activation and annexin V binding or by DNA fragmentation. Tumor-derived but not dendritic cell-derived MV induced the in vitro expansion of CD4(+)CD25(+)FOXP3(+) T regulatory cells and enhanced their suppressor activity. The data suggest that tumor-derived MV induce immune suppression by promoting T regulatory cell expansion and the demise of antitumor CD8(+) effector T cells, thus contributing to tumor escape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation.

            The effective management of fistulas in patients with Crohn's disease presents an extremely challenging problem. Mesenchymal adult stem cells extracted from certain tissues, such as adipose tissue, can differentiate into various cell types. Therefore, we have tried to use such cells to stimulate healing of Crohn's fistulas. We designed a prospective Phase I clinical trial, involving five patients with Crohn's disease, to test the feasibility and safety of autologous stem cells transplantation in the treatment of fistulas. We also studied the expression of various cell markers and the growth rates of the lipoaspirate-derived cells that were used for transplantation. One patient was excluded because of bacterial contamination of cultured cells. We inoculated nine fistulas in four patients with autologous adipose tissue-derived stem cells at Passage 3 or earlier. Eight inoculated fistulas were followed weekly for at least eight weeks. In six fistulas, the external opening was covered with epithelium at the end of Week 8, and, thus, these fistulas were considered healed (75 percent). In the other two fistulas, there was only incomplete closure of the external opening, with a decrease in output flow (not healed; 25 percent). No adverse effects were observed in any patient at the end of the follow-up period (minimum follow-up,12 months; maximum follow-up, 30 months; follow-up average, 22 months). To our knowledge, this is the first report of a clinical trial of cell therapy using autologous stem cells obtained from a lipoaspirate. Our results indicate that our protocol is feasible and safe for the treatment of fistulas in Crohn's disease. The number of patients included and the uncontrolled nature of Phase I clinical trials do not allow demonstration of the effectiveness of the treatment. However, the results of the present study encourage to perform further studies in Phase II.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome/microvesicle-mediated epigenetic reprogramming of cells.

              Microvesicles (MVs) are released by different cell types and may remain in the extracellular space in proximity of the cell of origin or may enter the biological fluids. MVs released by tumor cells are detectable in patients with cancer and their number in the circulation correlates with poor prognosis. Recent studies demonstrated that MVs may act as mediator of cell-to-cell communication thus ensuring short- and long-range exchange of information. Due to their pleyotropic effects, MVs may play a role in the prothrombotic state associated with cancer as well as in cancer development and progression. It has been recently shown that MVs may induce epigenetic changes in target cells by transferring genetic information. This finding suggests that tumor and stromal cells may talk each other via MVs to establish a favorable tumor niche and to promote tumor growth, invasiveness and progression. Moreover, MVs contain genetic material under the form of mRNA and microRNA, that may allow an easy screening for cancer genetic markers and offer new diagnostic and prognostic information. This review presents an overview of the many biological actions of MVs and of the potential role of MV-mediated exchange of genetic information among cells in tumor biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                12 March 2019
                2019
                : 10
                : 446
                Affiliations
                [1] 1Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona , Verona, Italy
                [2] 2Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona , Verona, Italy
                [3] 3Department of Computer Science, University of Verona , Verona, Italy
                [4] 4Department of Biotechnology, University of Verona , Verona, Italy
                [5] 5Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria, Italy
                [6] 6Center for Translational Research on Autoimmune and Allergic Diseases (CAAD) , Novara, Italy
                [7] 7Department of Molecular Biotechnology and Health Sciences, University of Torino , Turin, Italy
                [8] 8Department of Oncology, University of Torino , Turin, Italy
                Author notes

                Edited by: Helena Stabile, Sapienza University of Rome, Italy

                Reviewed by: Jarek T. Baran, Jagiellonian University Medical College, Poland; Greg Lavieu, Institut National de la Santé et de la Recherche Médicale (INSERM), France

                *Correspondence: Mauro Krampera mauro.krampera@ 123456univr.it

                This article was submitted to Cytokines and Soluble Mediators in Immunity, a section of the journal Frontiers in Immunology

                †Present Address: Paul Takam Kamga, EA4340-BCOH: Biomarker in Cancerology and Onco-Hematology, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France

                Article
                10.3389/fimmu.2019.00446
                6423067
                30915084
                95855c2b-d491-420e-ac91-2d26afc447f0
                Copyright © 2019 Adamo, Brandi, Caligola, Delfino, Bazzoni, Carusone, Cecconi, Giugno, Manfredi, Robotti, Marengo, Bassi, Takam Kamga, Dal Collo, Gatti, Mercuri, Arigoni, Olivero, Calogero and Krampera.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 November 2018
                : 19 February 2019
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 94, Pages: 22, Words: 13087
                Categories
                Immunology
                Original Research

                Immunology
                extracellular vesicles,mesenchymal stromal cells,b cells,high-throughput analysis,pi3k-akt signaling pathway,actin cytoskeleton,mirna-155-5p

                Comments

                Comment on this article