13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d7243136e265">Previous studies demonstrated “auditory looming bias” exclusively by manipulating overall sound intensity. Hence, it is not clear whether this bias truly reflects perceptual differences in sensitivity to motion direction rather than changes in intensity. We manipulated individualized spectral cues to create stimuli that were perceived as either approaching or receding, while controlling loudness. We assessed discrimination of motion direction and analyzed simultaneously recorded neural responses using electroencephalography. Our results show both behavioral and neural evidence of looming bias. Therefore, our study demonstrates that the bias is truly about perceived motion in distance, not intensity changes. </p><p class="first" id="d7243136e268">Studies of auditory looming bias have shown that sources increasing in intensity are more salient than sources decreasing in intensity. Researchers have argued that listeners are more sensitive to approaching sounds compared with receding sounds, reflecting an evolutionary pressure. However, these studies only manipulated overall sound intensity; therefore, it is unclear whether looming bias is truly a perceptual bias for changes in source distance, or only in sound intensity. Here we demonstrate both behavioral and neural correlates of looming bias without manipulating overall sound intensity. In natural environments, the pinnae induce spectral cues that give rise to a sense of externalization; when spectral cues are unnatural, sounds are perceived as closer to the listener. We manipulated the contrast of individually tailored spectral cues to create sounds of similar intensity but different naturalness. We confirmed that sounds were perceived as approaching when spectral contrast decreased, and perceived as receding when spectral contrast increased. We measured behavior and electroencephalography while listeners judged motion direction. Behavioral responses showed a looming bias in that responses were more consistent for sounds perceived as approaching than for sounds perceived as receding. In a control experiment, looming bias disappeared when spectral contrast changes were discontinuous, suggesting that perceived motion in distance and not distance itself was driving the bias. Neurally, looming bias was reflected in an asymmetry of late event-related potentials associated with motion evaluation. Hence, both our behavioral and neural findings support a generalization of the auditory looming bias, representing a perceptual preference for approaching auditory objects. </p>

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Derivation of auditory filter shapes from notched-noise data.

          A well established method for estimating the shape of the auditory filter is based on the measurement of the threshold of a sinusoidal signal in a notched-noise masker, as a function of notch width. To measure the asymmetry of the filter, the notch has to be placed both symmetrically and asymmetrically about the signal frequency. In previous work several simplifying assumptions and approximations were made in deriving auditory filter shapes from the data. In this paper we describe modifications to the fitting procedure which allow more accurate derivations. These include: 1) taking into account changes in filter bandwidth with centre frequency when allowing for the effects of off-frequency listening; 2) correcting for the non-flat frequency response of the earphone; 3) correcting for the transmission characteristics of the outer and middle ear; 4) limiting the amount by which the centre frequency of the filter can shift in order to maximise the signal-to-masker ratio. In many cases, these modifications result in only small changes to the derived filter shape. However, at very high and very low centre frequencies and for hearing-impaired subjects the differences can be substantial. It is also shown that filter shapes derived from data where the notch is always placed symmetrically about the signal frequency can be seriously in error when the underlying filter is markedly asymmetric. New formulae are suggested describing the variation of the auditory filter with frequency and level. The implication of the results for the calculation of excitation patterns are discussed and a modified procedure is proposed. The appendix list FORTRAN computer programs for deriving auditory filter shapes from notched-noise data and for calculating excitation patterns. The first program can readily be modified so as to derive auditory filter shapes from data obtained with other types of maskers, such as rippled noise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dynamic Sounds Capture the Boundaries of Peripersonal Space Representation in Humans

            Background We physically interact with external stimuli when they occur within a limited space immediately surrounding the body, i.e., Peripersonal Space (PPS). In the primate brain, specific fronto-parietal areas are responsible for the multisensory representation of PPS, by integrating tactile, visual and auditory information occurring on and near the body. Dynamic stimuli are particularly relevant for PPS representation, as they might refer to potential harms approaching the body. However, behavioural tasks for studying PPS representation with moving stimuli are lacking. Here we propose a new dynamic audio-tactile interaction task in order to assess the extension of PPS in a more functionally and ecologically valid condition. Methodology/Principal Findings Participants vocally responded to a tactile stimulus administered at the hand at different delays from the onset of task-irrelevant dynamic sounds which gave the impression of a sound source either approaching or receding from the subject’s hand. Results showed that a moving auditory stimulus speeded up the processing of a tactile stimulus at the hand as long as it was perceived at a limited distance from the hand, that is within the boundaries of PPS representation. The audio-tactile interaction effect was stronger when sounds were approaching compared to when sounds were receding. Conclusion/Significance This study provides a new method to dynamically assess PPS representation: The function describing the relationship between tactile processing and the position of sounds in space can be used to estimate the location of PPS boundaries, along a spatial continuum between far and near space, in a valuable and ecologically significant way.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Perceptual bias for rising tones.

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 05 2017
                September 05 2017
                September 05 2017
                August 21 2017
                : 114
                : 36
                : 9743-9748
                Article
                10.1073/pnas.1703247114
                5594652
                28827336
                957fadc3-fefd-4a2f-a449-b255fc29070c
                © 2017

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article