79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In Silico Analysis of the Conservation of Human Toxicity and Endocrine Disruption Targets in Aquatic Species

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pharmaceuticals and industrial chemicals, both in the environment and in research settings, commonly interact with aquatic vertebrates. Due to their short life-cycles and the traits that can be generalized to other organisms, fish and amphibians are attractive models for the evaluation of toxicity caused by endocrine disrupting chemicals (EDCs) and adverse drug reactions. EDCs, such as pharmaceuticals or plasticizers, alter the normal function of the endocrine system and pose a significant hazard to human health and the environment. The selection of suitable animal models for toxicity testing is often reliant on high sequence identity between the human proteins and their animal orthologs. Herein, we compare in silico the ligand-binding sites of 28 human “side-effect” targets to their corresponding orthologs in Danio rerio, Pimephales promelas, Takifugu rubripes, Xenopus laevis, and Xenopus tropicalis, as well as subpockets involved in protein interactions with specific chemicals. We found that the ligand-binding pockets had much higher conservation than the full proteins, while the peroxisome proliferator-activated receptor γ and corticotropin-releasing factor receptor 1 were notable exceptions. Furthermore, we demonstrated that the conservation of subpockets may vary dramatically. Finally, we identified the aquatic model(s) with the highest binding site similarity, compared to the corresponding human toxicity target.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Reorganizing the protein space at the Universal Protein Resource (UniProt)

          The mission of UniProt is to support biological research by providing a freely accessible, stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces. UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. A key development at UniProt is the provision of complete, reference and representative proteomes. UniProt is updated and distributed every 4 weeks and can be accessed online for searches or download at http://www.uniprot.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome of the Western clawed frog Xenopus tropicalis.

            The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zebrafish hox clusters and vertebrate genome evolution.

              HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven hox clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobe-finned fishes but before the teleost radiation. Thus, teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ. Sci. Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                06 January 2015
                06 January 2014
                04 February 2014
                : 48
                : 3
                : 1964-1972
                Affiliations
                [1]Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
                Author notes
                [* ]Tel.: (858) 822-3404; fax: (858) 822-5591; e-mail: ruben@ 123456ucsd.edu .
                Article
                10.1021/es404568a
                3951377
                24392850
                950fa003-36a7-46cb-bc96-2a5a25d6002a
                Copyright © 2014 American Chemical Society
                History
                : 11 October 2013
                : 06 January 2014
                : 25 December 2013
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                es404568a
                es-2013-04568a

                General environmental science
                General environmental science

                Comments

                Comment on this article