23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure

      , , , , ,
      Water
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endocrine-disrupting compounds (EDCs) as emerging contaminants have accumulated in the aquatic environment at concentration levels that have been determined to be significant to humans and animals. Several compounds belong to this family, from natural substances (hormones such as estrone, 17-estradiol, and estriol) to synthetic chemicals, especially pesticides, pharmaceuticals, and plastic-derived compounds (phthalates, bisphenol A). In this review, we discuss recent works regarding EDC occurrence in the aquatic compartment, strengths and limitations of current analytical methods used for their detection, treatment technologies for their removal from water, and the health issues that they can trigger in humans. Nowadays, many EDCs have been identified in significant amounts in different water matrices including drinking water, thus increasing the possibility of entering the food chain. Several studies correlate human exposure to high concentrations of EDCs with serious effects such as infertility, thyroid dysfunction, early puberty, endometriosis, diabetes, and obesity. Although our intention is not to explain all disorders related to EDCs exposure, this review aims to guide future research towards a deeper knowledge of EDCs’ contamination and accumulation in water, highlighting their toxicity and exposure risks to humans.

          Related collections

          Most cited references240

          • Record: found
          • Abstract: found
          • Article: not found

          Bisphenol A and human health: a review of the literature.

          There is growing evidence that bisphenol A (BPA) may adversely affect humans. BPA is an endocrine disruptor that has been shown to be harmful in laboratory animal studies. Until recently, there were relatively few epidemiological studies examining the relationship between BPA and health effects in humans. However, in the last year, the number of these studies has more than doubled. A comprehensive literature search found 91 studies linking BPA to human health; 53 published within the last year. This review outlines this body of literature, showing associations between BPA exposure and adverse perinatal, childhood, and adult health outcomes, including reproductive and developmental effects, metabolic disease, and other health effects. These studies encompass both prenatal and postnatal exposures, and include several study designs and population types. While it is difficult to make causal links with epidemiological studies, the growing human literature correlating environmental BPA exposure to adverse effects in humans, along with laboratory studies in many species including primates, provides increasing support that environmental BPA exposure can be harmful to humans, especially in regards to behavioral and other effects in children. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.

            For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early-life exposure to EDCs: role in childhood obesity and neurodevelopment

              Endocrine-disrupting chemicals (EDCs) can increase the risk of childhood diseases by disrupting hormone-mediated processes critical for growth and development. Here, Joseph Braun discusses epidemiological evidence of associations between early-life exposure to EDCs and childhood neurodevelopmental disorders and obesity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                May 2021
                May 12 2021
                : 13
                : 10
                : 1347
                Article
                10.3390/w13101347
                d2afba93-8344-40cf-b255-82507bea5a6f
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article