Prone positioning in combination with the application of low tidal volume and adequate positive end-expiratory pressure (PEEP) improves survival in patients with moderate to severe acute respiratory distress syndrome (ARDS). However, the effects of PEEP on end-expiratory transpulmonary pressure (Ptp exp) during prone positioning require clarification. For this purpose, the effects of three different PEEP titration strategies on Ptp exp, respiratory mechanics, mechanical power, gas exchange, and hemodynamics were evaluated comparing supine and prone positioning.
In forty consecutive patients with moderate to severe ARDS protective ventilation with PEEP titrated according to three different titration strategies was evaluated during supine and prone positioning: (A) ARDS Network recommendations (PEEP ARDSNetwork), (B) the lowest static elastance of the respiratory system (PEEP Estat,RS), and (C) targeting a positive Ptp exp (PEEP Ptpexp). The primary endpoint was to analyze whether Ptp exp differed significantly according to PEEP titration strategy during supine and prone positioning.
Ptp exp increased progressively with prone positioning compared with supine positioning as well as with PEEP Estat,RS and PEEP Ptpexp compared with PEEP ARDSNetwork (positioning effect p < 0.001, PEEP strategy effect p < 0.001). PEEP was lower during prone positioning with PEEP Estat,RS and PEEP Ptpexp (positioning effect p < 0.001, PEEP strategy effect p < 0.001). During supine positioning, mechanical power increased progressively with PEEP Estat,RS and PEEP Ptpexp compared with PEEP ARDSNetwork, and prone positioning attenuated this effect (positioning effect p < 0.001, PEEP strategy effect p < 0.001). Prone compared with supine positioning significantly improved oxygenation (positioning effect p < 0.001, PEEP strategy effect p < 0.001) while hemodynamics remained stable in both positions.
Prone positioning increased transpulmonary pressures while improving oxygenation and hemodynamics in patients with moderate to severe ARDS when PEEP was titrated according to the ARDS Network lower PEEP table. This PEEP titration strategy minimized parameters associated with ventilator-induced lung injury induction, such as transpulmonary driving pressure and mechanical power. We propose that a lower PEEP strategy (PEEP ARDSNetwork) in combination with prone positioning may be part of a lung protective ventilation strategy in patients with moderate to severe ARDS.
German Clinical Trials Register ( DRKS00017449). Registered June 27, 2019. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017449
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.