Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of glutamatergic neurons in the somatosensory cortex promotes remyelination in ischemic vascular dementia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.

          Graphical Abstract

          Graphical Abstract

          .

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging.

          The type, frequency, and extent of MR signal abnormalities in Alzheimer's disease and normal aging are a subject of controversy. With a 1.5-MR unit we studied 12 Alzheimer patients, four subjects suffering from multiinfarct dementia and nine age-matched controls. Punctate or early confluent high-signal abnormalities in the deep white matter, noted in 60% of both Alzheimer patients and controls, were unrelated to the presence of hypertension or other vascular risk factors. A significant number of Alzheimer patients exhibited a more extensive smooth "halo" of periventricular hyperintensity when compared with controls (p = .024). Widespread deep white-matter hyperintensity (two patients) and extensive, irregular periventricular hyperintensity (three patients) were seen in multiinfarct dementia. Areas of high signal intensity affecting hippocampal and sylvian cortex were also present in five Alzheimer and two multiinfarct dementia patients, but absent in controls. Discrete, small foci of deep white-matter hyperintensity are not characteristic of Alzheimer's disease nor do they appear to imply a vascular cause for the dementing illness. The frequently observed "halo" of periventricular hyperintensity in Alzheimer's disease may be of diagnostic importance. High-signal abnormalities in specific cortical regions are likely to reflect disease processes localized to those structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal subtype specification in the cerebral cortex.

            In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors.

              Despite mortality due to communicable diseases, poverty, and human conflicts, dementia incidence is destined to increase in the developing world in tandem with the ageing population. Current data from developing countries suggest that age-adjusted dementia prevalence estimates in 65 year olds are high (>or=5%) in certain Asian and Latin American countries, but consistently low (1-3%) in India and sub-Saharan Africa; Alzheimer's disease accounts for 60% whereas vascular dementia accounts for approximately 30% of the prevalence. Early-onset familial forms of dementia with single-gene defects occur in Latin America, Asia, and Africa. Illiteracy remains a risk factor for dementia. The APOE epsilon4 allele does not influence dementia progression in sub-Saharan Africans. Vascular factors, such as hypertension and type 2 diabetes, are likely to increase the burden of dementia. Use of traditional diets and medicinal plant extracts might aid prevention and treatment. Dementia costs in developing countries are estimated to be US$73 billion yearly, but care demands social protection, which seems scarce in these regions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Fundam Res
                Fundam Res
                Fundamental Research
                KeAi Publishing
                2096-9457
                2667-3258
                23 August 2022
                January 2024
                23 August 2022
                : 4
                : 1
                : 188-198
                Affiliations
                [a ]Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
                [b ]Department of Pharmacy, Sir Run Run Shaw Hospital, Hangzhou 310012, China
                [c ]Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
                [d ]Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
                Author notes
                [* ]Corresponding author. huww@ 123456zju.edu.cn
                [1]

                These authors contributed equally to this work.

                Article
                S2667-3258(22)00348-X
                10.1016/j.fmre.2022.08.007
                11197523
                38933843
                94f8ed4d-871a-4d09-a1fd-9208bd291b6b
                © 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 5 March 2022
                : 28 July 2022
                : 3 August 2022
                Categories
                Article

                chronic cerebral hypoperfusion,optogenetic stimulation,oligodendrocyte progenitor cell,ischemic vascular dementia,glutamatergic neuron,remyelination

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content612

                Cited by1

                Most referenced authors463