23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Warburg effect is an emerging hallmark of cancer cells with pyruvate kinase M2 (PKM2) as its key regulator. Curcumin is an extensively-studied anti-cancer compound, however, its role in affecting cancer metabolism remains poorly understood. Herein, we show that curcumin inhibits glucose uptake and lactate production (Warburg effect) in a variety of cancer cell lines by down-regulating PKM2 expression, via inhibition of mTOR-HIF1α axis. Stable PKM2 silencing revealed that PKM2 is required for Warburg effect and proliferation of cancer cells. PKM2 over-expression abrogated the effects of curcumin, demonstrating that inhibition of Warburg effect by curcumin is PKM2-mediated. High PKM2 expression correlated strongly with poor overall survival in cancer, suggesting the requirement of PKM2 in cancer progression. The study unravels novel PKM2-mediated inhibitory effect of curcumin on metabolic capacities of cancer cells. To the best of our knowledge, this is the first study linking curcumin with PKM2-driven cancer glycolysis, thus, providing new perspectives into the mechanism of its anticancer activity.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found

          Targeting metabolic transformation for cancer therapy.

          Cancer therapy has long relied on the rapid proliferation of tumour cells for effective treatment. However, the lack of specificity in this approach often leads to undesirable side effects. Many reports have described various 'metabolic transformation' events that enable cancer cells to survive, suggesting that metabolic pathways might be good targets. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered metabolic pathways of tumours. This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth.

            Although aerobic glycolysis (the Warburg effect) is a hallmark of cancer, key questions, including when, how, and why cancer cells become highly glycolytic, remain less clear. For a largely unknown regulatory mechanism, a rate-limiting glycolytic enzyme pyruvate kinase M2 (PKM2) isoform is exclusively expressed in embryonic, proliferating, and tumor cells, and plays an essential role in tumor metabolism and growth. Because the receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) signaling cascade is a frequently altered pathway in cancer, we explored its potential role in cancer metabolism. We identified mTOR as a central activator of the Warburg effect by inducing PKM2 and other glycolytic enzymes under normoxic conditions. PKM2 level was augmented in mouse kidney tumors due to deficiency of tuberous sclerosis complex 2 and consequent mTOR activation, and was reduced in human cancer cells by mTOR suppression. mTOR up-regulation of PKM2 expression was through hypoxia-inducible factor 1α (HIF1α)-mediated transcription activation, and c-Myc-heterogeneous nuclear ribonucleoproteins (hnRNPs)-dependent regulation of PKM2 gene splicing. Disruption of PKM2 suppressed oncogenic mTOR-mediated tumorigenesis. Unlike normal cells, mTOR hyperactive cells were more sensitive to inhibition of mTOR or glycolysis. Dual suppression of mTOR and glycolysis synergistically blunted the proliferation and tumor development of mTOR hyperactive cells. Even though aerobic glycolysis is not required for breach of senescence for immortalization and transformation, the frequently deregulated mTOR signaling during multistep oncogenic processes could contribute to the development of the Warburg effect in many cancers. Components of the mTOR/HIF1α/Myc-hnRNPs/PKM2 glycolysis signaling network could be targeted for the treatment of cancer caused by an aberrant RTK/PI3K/AKT/mTOR signaling pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2.

              We recently reported that shikonin and its analogs were a class of necroptotic inducers that could bypass cancer drug resistance. However, the molecular targets of shikonin are not known. Here, we showed that shikonin and its analogs are inhibitors of tumor-specific pyruvate kinase-M2 (PKM2), among which shikonin and its enantiomeric isomer alkannin were the most potent and showed promising selectivity, that is, shikonin and alkannin at concentrations that resulted in over 50% inhibition of PKM2 activity did not inhibit PKM1 and pyruvate kinase-L (PKL). Shikonin and alkannin significantly inhibited the glycolytic rate, as manifested by cellular lactate production and glucose consumption in drug-sensitive and resistant cancer cell lines (MCF-7, MCF-7/Adr, MCF-7/Bcl-2, MCF-7/Bcl-x(L) and A549) that primarily express PKM2. HeLa cells transfected with PKM1 showed reduced sensitivity to shikonin- or alkannin-induced cell death. To the best of our knowledge, shikonin and alkannin are the most potent and specific inhibitors to PKM2 reported so far. As PKM2 universally expresses in cancer cells and dictates the last rate-limiting step of glycolysis vital for cancer cell proliferation and survival, enantiomeric shikonin and alkannin may have potential in future clinical application.
                Bookmark

                Author and article information

                Contributors
                miqbal2@jmi.ac.in
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 May 2018
                29 May 2018
                2018
                : 8
                : 8323
                Affiliations
                [1 ]ISNI 0000 0004 0498 8255, GRID grid.411818.5, Department of Biotechnology, Faculty of Natural Sciences, , Jamia Millia Islamia (A Central University), Jamia Nagar, ; New Delhi, 110025 India
                [2 ]ISNI 0000 0004 0498 924X, GRID grid.10706.30, School of Life Sciences, , Jawaharlal Nehru University, New Mehrauli Road, ; New Delhi, 110067 India
                [3 ]ISNI 0000 0004 0498 8167, GRID grid.411816.b, Department of Toxicology, School of Chemical and Life Sciences, , Jamia Hamdard (Deemed University), ; New Delhi, 110062 India
                [4 ]ISNI 0000 0004 0498 8255, GRID grid.411818.5, Department of Biosciences, Faculty of Natural Sciences, , Jamia Millia Islamia (A Central University), Jamia Nagar, ; New Delhi, 110025 India
                Author information
                http://orcid.org/0000-0003-2697-7832
                http://orcid.org/0000-0003-3485-3530
                Article
                25524
                10.1038/s41598-018-25524-3
                5974195
                29844464
                944cc0c3-7f6f-48a9-81b3-cfedd57298d4
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 November 2017
                : 18 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article