60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.

          Related collections

          Most cited references902

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells

          Oncogenic KRas reprograms pancreatic ductal adenocarcinoma (PDAC) cells to states which are highly resistant to apoptosis. Thus, a major preclinical goal is to identify effective strategies for killing PDAC cells. Artesunate (ART) is an anti-malarial that specifically induces programmed cell death in different cancer cell types, in a manner initiated by reactive oxygen species (ROS)-generation. In this study we demonstrate that ART specifically induced ROS- and lysosomal iron-dependent cell death in PDAC cell lines. Highest cytotoxicity was obtained in PDAC cell lines with constitutively-active KRas, and ART did not affect non-neoplastic human pancreatic ductal epithelial (HPDE) cells. We determined that ART did not induce apoptosis or necroptosis. Instead, ART induced ferroptosis, a recently described mode of ROS- and iron-dependent programmed necrosis which can be activated in Ras-transformed cells. Co-treatment with the ferroptosis inhibitor ferrostatin-1 blocked ART-induced lipid peroxidation and cell death, and increased long-term cell survival and proliferation. Importantly, analysis of PDAC patient mRNA expression indicates a dependency on antioxidant homeostasis and increased sensitivity to free intracellular iron, both of which correlate with Ras-driven sensitivity to ferroptosis. Overall, our findings suggest that ART activation of ferroptosis is an effective, novel pathway for killing PDAC cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea.

            The consumption of green tea (Camellia sinensis) has been shown to have many physiological and pharmacological health benefits. In the past two decades several studies have reported that epigallocatechin-3-gallate (EGCG), the main constituent of green tea, has anti-infective properties. Antiviral activities of EGCG with different modes of action have been demonstrated on diverse families of viruses, such as Retroviridae, Orthomyxoviridae and Flaviviridae and include important human pathogens like human immunodeficiency virus, influenza A virus and the hepatitis C virus. Furthermore, the molecule interferes with the replication cycle of DNA viruses like hepatitis B virus, herpes simplex virus and adenovirus. Most of these studies demonstrated antiviral properties within physiological concentrations of EGCG in vitro. In contrast, the minimum inhibitory concentrations against bacteria were 10-100-fold higher. Nevertheless, the antibacterial effects of EGCG alone and in combination with different antibiotics have been intensively analysed against a number of bacteria including multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus or Stenotrophomonas maltophilia. Furthermore, the catechin EGCG has antifungal activity against human-pathogenic yeasts like Candida albicans. Although the mechanistic effects of EGCG are not fully understood, there are results indicating that EGCG binds to lipid membranes and affects the folic acid metabolism of bacteria and fungi by inhibiting the cytoplasmic enzyme dihydrofolate reductase. This review summarizes the current knowledge and future perspectives on the antibacterial, antifungal and antiviral effects of the green tea constituent EGCG. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2.

              We recently reported that shikonin and its analogs were a class of necroptotic inducers that could bypass cancer drug resistance. However, the molecular targets of shikonin are not known. Here, we showed that shikonin and its analogs are inhibitors of tumor-specific pyruvate kinase-M2 (PKM2), among which shikonin and its enantiomeric isomer alkannin were the most potent and showed promising selectivity, that is, shikonin and alkannin at concentrations that resulted in over 50% inhibition of PKM2 activity did not inhibit PKM1 and pyruvate kinase-L (PKL). Shikonin and alkannin significantly inhibited the glycolytic rate, as manifested by cellular lactate production and glucose consumption in drug-sensitive and resistant cancer cell lines (MCF-7, MCF-7/Adr, MCF-7/Bcl-2, MCF-7/Bcl-x(L) and A549) that primarily express PKM2. HeLa cells transfected with PKM1 showed reduced sensitivity to shikonin- or alkannin-induced cell death. To the best of our knowledge, shikonin and alkannin are the most potent and specific inhibitors to PKM2 reported so far. As PKM2 universally expresses in cancer cells and dictates the last rate-limiting step of glycolysis vital for cancer cell proliferation and survival, enantiomeric shikonin and alkannin may have potential in future clinical application.
                Bookmark

                Author and article information

                Contributors
                yb87518@um.edu.mo
                gigictvong@um.edu.mo
                yb87511@um.edu.mo
                gaoyanki@hotmail.com
                yb87503@um.edu.mo
                yb87510@um.edu.mo
                yb87509@um.edu.mo
                yb87502@um.edu.mo
                yb87516@um.edu.mo
                yb87505@um.edu.mo
                yb87508@um.edu.mo
                yb87504@um.edu.mo
                wjc551@hotmail.com
                carolinaung@um.edu.mo
                swang@um.edu.mo
                zfzhong@aliyun.com
                ytwang@um.edu.mo
                Journal
                Chin Med
                Chin Med
                Chinese Medicine
                BioMed Central (London )
                1749-8546
                6 November 2019
                6 November 2019
                2019
                : 14
                : 48
                Affiliations
                Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
                Article
                270
                10.1186/s13020-019-0270-9
                6836491
                31719837
                bfa6c59f-4782-4333-9cc6-e4a91b8ebc80
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 August 2019
                : 23 October 2019
                Funding
                Funded by: the Macao Science and Technology Development Fund
                Award ID: FDCT 071/2017/A2
                Award Recipient :
                Funded by: the Research Committee of the University of Macau
                Award ID: CPG2019-00006-ICMS
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Complementary & Alternative medicine
                cancer,chinese herbal medicine,natural products,bioactive compounds,traditional chinese medicine

                Comments

                Comment on this article