8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A {CrIII2DyIII2} Single-Molecule Magnet: Enhancing the Blocking Temperature through 3d Magnetic Exchange

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular spintronics using single-molecule magnets.

          A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Lanthanide single-molecule magnets.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MOLCAS 7: the next generation.

              Some of the new unique features of the MOLCAS quantum chemistry package version 7 are presented in this report. In particular, the Cholesky decomposition method applied to some quantum chemical methods is described. This approach is used both in the context of a straight forward approximation of the two-electron integrals and in the generation of so-called auxiliary basis sets. The article describes how the method is implemented for most known wave functions models: self-consistent field, density functional theory, 2nd order perturbation theory, complete-active space self-consistent field multiconfigurational reference 2nd order perturbation theory, and coupled-cluster methods. The report further elaborates on the implementation of a restricted-active space self-consistent field reference function in conjunction with 2nd order perturbation theory. The average atomic natural orbital basis for relativistic calculations, covering the whole periodic table, are described and associated unique properties are demonstrated. Furthermore, the use of the arbitrary order Douglas-Kroll-Hess transformation for one-component relativistic calculations and its implementation are discussed. This section especially focuses on the implementation of the so-called picture-change-free atomic orbital property integrals. Moreover, the ElectroStatic Potential Fitted scheme, a version of a quantum mechanics/molecular mechanics hybrid method implemented in MOLCAS, is described and discussed. Finally, the report discusses the use of the MOLCAS package for advanced studies of photo chemical phenomena and the usefulness of the algorithms for constrained geometry optimization in MOLCAS in association with such studies. Copyright 2009 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley-Blackwell
                14337851
                November 11 2013
                November 11 2013
                : 52
                : 46
                : 12014-12019
                Article
                10.1002/anie.201306329
                24105970
                940ca21c-a82d-4ee9-b9cf-9305d6183e6a
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article