21
views
0
recommends
+1 Recommend
4 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunologic and vascular biomarkers of mortality in critical COVID-19 in a South African cohort

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Biomarkers predicting mortality among critical Coronavirus disease 2019 (COVID-19) patients provide insight into the underlying pathophysiology of fatal disease and assist with triaging of cases in overburdened settings. However, data describing these biomarkers in Sub-Saharan African populations are sparse.

          Methods

          We collected serum samples and corresponding clinical data from 87 patients with critical COVID-19 on day 1 of admission to the intensive care unit (ICU) of a tertiary hospital in Cape Town, South Africa, during the second wave of the COVID-19 pandemic. A second sample from the same patients was collected on day 7 of ICU admission. Patients were followed up until in-hospital death or hospital discharge. A custom-designed 52 biomarker panel was performed on the Luminex® platform. Data were analyzed for any association between biomarkers and mortality based on pre-determined functional groups, and individual analytes.

          Results

          Of 87 patients, 55 (63.2%) died and 32 (36.8%) survived. We found a dysregulated cytokine response in patients who died, with elevated levels of type-1 and type-2 cytokines, chemokines, and acute phase reactants, as well as reduced levels of regulatory T cell cytokines. Interleukin (IL)-15 and IL-18 were elevated in those who died, and levels reduced over time in those who survived. Procalcitonin (PCT), C-reactive protein, Endothelin-1 and vascular cell adhesion molecule-1 were elevated in those who died.

          Discussion

          These results show the pattern of dysregulation in critical COVID-19 in a Sub-Saharan African cohort. They suggest that fatal COVID-19 involved excessive activation of cytotoxic cells and the NLRP3 (nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3) inflammasome. Furthermore, superinfection and endothelial dysfunction with thrombosis might have contributed to mortality. HIV infection did not affect the outcome. A clinically relevant biosignature including PCT, pH and lymphocyte percentage on differential count, had an 84.8% sensitivity for mortality, and outperformed the Luminex-derived biosignature.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The REDCap consortium: Building an international community of software platform partners

          The Research Electronic Data Capture (REDCap) data management platform was developed in 2004 to address an institutional need at Vanderbilt University, then shared with a limited number of adopting sites beginning in 2006. Given bi-directional benefit in early sharing experiments, we created a broader consortium sharing and support model for any academic, non-profit, or government partner wishing to adopt the software. Our sharing framework and consortium-based support model have evolved over time along with the size of the consortium (currently more than 3200 REDCap partners across 128 countries). While the "REDCap Consortium" model represents only one example of how to build and disseminate a software platform, lessons learned from our approach may assist other research institutions seeking to build and disseminate innovative technologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute respiratory distress syndrome: the Berlin Definition.

            The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal

              Abstract Objective To review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at risk of being admitted to hospital for covid-19 pneumonia. Design Rapid systematic review and critical appraisal. Data sources PubMed and Embase through Ovid, Arxiv, medRxiv, and bioRxiv up to 24 March 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 2696 titles were screened, and 27 studies describing 31 prediction models were included. Three models were identified for predicting hospital admission from pneumonia and other events (as proxy outcomes for covid-19 pneumonia) in the general population; 18 diagnostic models for detecting covid-19 infection (13 were machine learning based on computed tomography scans); and 10 prognostic models for predicting mortality risk, progression to severe disease, or length of hospital stay. Only one study used patient data from outside of China. The most reported predictors of presence of covid-19 in patients with suspected disease included age, body temperature, and signs and symptoms. The most reported predictors of severe prognosis in patients with covid-19 included age, sex, features derived from computed tomography scans, C reactive protein, lactic dehydrogenase, and lymphocyte count. C index estimates ranged from 0.73 to 0.81 in prediction models for the general population (reported for all three models), from 0.81 to more than 0.99 in diagnostic models (reported for 13 of the 18 models), and from 0.85 to 0.98 in prognostic models (reported for six of the 10 models). All studies were rated at high risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, and high risk of model overfitting. Reporting quality varied substantially between studies. Most reports did not include a description of the study population or intended use of the models, and calibration of predictions was rarely assessed. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that proposed models are poorly reported, at high risk of bias, and their reported performance is probably optimistic. Immediate sharing of well documented individual participant data from covid-19 studies is needed for collaborative efforts to develop more rigorous prediction models and validate existing ones. The predictors identified in included studies could be considered as candidate predictors for new models. Methodological guidance should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, studies should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                03 July 2023
                2023
                03 July 2023
                : 14
                : 1219097
                Affiliations
                [1] 1 Department of Science and Technology/National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Biomedical Research Institute, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
                [2] 2 Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
                [3] 3 Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
                [4] 4 South African Tuberculosis Bioinformatics Initiative, Stellenbosch University , Cape Town, South Africa
                [5] 5 Centre for Bioinformatics and Computational Biology, Stellenbosch University , Stellenbosch, South Africa
                [6] 6 Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Hospital , Cape Town, South Africa
                [7] 7 Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Hospital , Cape Town, South Africa
                [8] 8 Division of Haematological Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg Hospital , Cape Town, South Africa
                [9] 9 Sefako Makgatho University of Health Sciences , Ga-Rankuwa, South Africa
                [10] 10 Division of Infection and Immunity, Centre for Clinical Microbiology, University College London , London, United Kingdom
                [11] 11 National Institute for Health Care Research (NIHR) Biomedical Research Centre, University College London (UCL) Hospitals National Health Service (NHS) Foundation Trust , London, United Kingdom
                [12] 12 Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
                Author notes

                Edited by: Etel Rocha-Vieira, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Brazil

                Reviewed by: Andreas Ronit, University of Copenhagen, Denmark; Martin Zacharias, Medical University of Graz, Austria

                *Correspondence: Peter S. Nyasulu, pnyasulu@ 123456sun.ac.za

                †These authors share last authorship

                Article
                10.3389/fimmu.2023.1219097
                10351604
                37465683
                9368a3bb-8c61-4fa2-9eca-d51bf51a499f
                Copyright © 2023 Shaw, Meiring, Snyders, Everson, Sigwadhi, Ngah, Tromp, Allwood, Koegelenberg, Irusen, Lalla, Baines, Zemlin, Erasmus, Chapanduka, Matsha, Walzl, Strijdom, du Plessis, Zumla, Chegou, Malherbe and Nyasulu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 May 2023
                : 12 June 2023
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 46, Pages: 17, Words: 7646
                Funding
                This work was conducted under the COVID-19 Africa Rapid Grant Fund supported under the auspices of the Science Granting Councils Initiative in Sub-Saharan Africa (SGCI) and administered by South Africa’s National Research Foundation (NRF) in collaboration with Canada’s International Development Research Centre (IDRC), the Swedish International Development Cooperation Agency (Sida), South Africa’s Department of Science and Innovation (DSI), the Fonds de Recherche du Québec (FRQ), the United Kingdom’s Department of International Development (DFID), United Kingdom Research and Innovation (UKRI) through the Newton Fund, and the SGCI participating councils across 15 countries in sub-Saharan countries. JAS is funded by the South African Medical Research Council through its Division of Research Capacity Development under the Bongani Mayosi National Health Scholars Programme for funding received from the Public Health Enhancement Fund/South African National Department of Health. The content hereof is the sole responsibility of the authors and does not necessarily represent the official views of the SGCI/NRF and the SAMRC.
                Categories
                Immunology
                Original Research
                Custom metadata
                Cytokines and Soluble Mediators in Immunity

                Immunology
                biomarkers,cytokines,covid-19,sars-cov-2,prognostic,mortality
                Immunology
                biomarkers, cytokines, covid-19, sars-cov-2, prognostic, mortality

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content76

                Cited by2

                Most referenced authors1,403