8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bread Dough and Baker's Yeast: An Uplifting Synergy : Yeast and bread dough: the interaction…

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Remodeling of yeast genome expression in response to environmental changes.

          We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves approximately 10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Improving industrial yeast strains: exploiting natural and artificial diversity

            Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sourdough and cereal fermentation in a nutritional perspective.

              Use of sourdough is of expanding interest for improvement of flavour, structure and stability of baked goods. Cereal fermentations also show significant potential in improvement and design of the nutritional quality and health effects of foods and ingredients. In addition to improving the sensory quality of whole grain, fibre-rich or gluten-free products, sourdough can also actively retard starch digestibility leading to low glycemic responses, modulate levels and bioaccessibility of bioactive compounds, and improve mineral bioavailability. Cereal fermentation may produce non-digestible polysaccharides, or modify accessibility of the grain fibre complex to gut microbiota. It has also been suggested that degradation of gluten may render bread better suitable for celiac persons. The changes in cereal matrix potentially leading to improved nutritional quality are numerous. They include acid production, suggested to retard starch digestibility, and to adjust pH to a range which favours the action of certain endogenous enzymes, thus changing the bioavailability pattern of minerals and phytochemicals. This is especially beneficial in products rich in bran to deliver minerals and potentially protective compounds in the blood circulation. The action of enzymes during fermentation also causes hydrolysis and solubilisation of grain macromolecules, such as proteins and cell wall polysaccharides. This changes product texture, which may affect nutrient and non-nutrient absorption. New bioactive compounds, such as prebiotic oligosaccharides or other metabolites, may also be formed in cereal fermentations.
                Bookmark

                Author and article information

                Journal
                Comprehensive Reviews in Food Science and Food Safety
                Comprehensive Reviews in Food Science and Food Safety
                Wiley
                15414337
                September 2017
                September 2017
                July 28 2017
                : 16
                : 5
                : 850-867
                Affiliations
                [1 ]Lab. of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven; Kasteelpark Arenberg 20 B-3001 Leuven Belgium
                [2 ]VIB Lab. for Systems Biology & CMPG Laboratory for Genetics and Genomics; KU Leuven; Bio-Incubator, Gaston Geenslaan 1 B-3001 Leuven Belgium
                Article
                10.1111/1541-4337.12282
                33371607
                93548366-99a6-40cb-af8d-a149e250a7bf
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article