19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Phosphatase 1 (PP1) Is a Post-Translational Regulator of the Mammalian Circadian Clock

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circadian clocks coordinate the timing of important biological processes. Interconnected transcriptional and post-translational feedback loops based on a set of clock genes generate and maintain these rhythms with a period of about 24 hours. Many clock proteins undergo circadian cycles of post-translational modifications. Among these modifications, protein phosphorylation plays an important role in regulating activity, stability and intracellular localization of clock components. Several protein kinases were characterized as regulators of the circadian clock. However, the function of protein phosphatases, which balance phosphorylation events, in the mammalian clock mechanism is less well understood. Here, we identify protein phosphatase 1 (PP1) as regulator of period and light-induced resetting of the mammalian circadian clock. Down-regulation of PP1 activity in cells by RNA interference and in vivo by expression of a specific inhibitor in the brain of mice tended to lengthen circadian period. Moreover, reduction of PP1 activity in the brain altered light-mediated clock resetting behavior in mice, enhancing the phase shifts in either direction. At the molecular level, diminished PP1 activity increased nuclear accumulation of the clock component PER2 in neurons. Hence, PP1, may reduce PER2 phosphorylation thereby influencing nuclear localization of this protein. This may at least partially influence period and phase shifting properties of the mammalian circadian clock.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

          Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular components of the mammalian circadian clock.

            Circadian rhythms are approximately 24-h oscillations in behavior and physiology, which are internally generated and function to anticipate the environmental changes associated with the solar day. A conserved transcriptional-translational autoregulatory loop generates molecular oscillations of 'clock genes' at the cellular level. In mammals, the circadian system is organized in a hierarchical manner, in which a master pacemaker in the suprachiasmatic nucleus (SCN) regulates downstream oscillators in peripheral tissues. Recent findings have revealed that the clock is cell-autonomous and self-sustained not only in a central pacemaker, the SCN, but also in peripheral tissues and in dissociated cultured cells. It is becoming evident that specific contribution of each clock component and interactions among the components vary in a tissue-specific manner. Here, we review the general mechanisms of the circadian clockwork, describe recent findings that elucidate tissue-specific expression patterns of the clock genes and address the importance of circadian regulation in peripheral tissues for an organism's overall well-being.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resetting of circadian time in peripheral tissues by glucocorticoid signaling.

              In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                21 June 2011
                : 6
                : 6
                : e21325
                Affiliations
                [1 ]Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
                [2 ]Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
                [3 ]Brain Research Institute, Medical Faculty of University Zürich and Department of Biology of Swiss Federal Institute of Technology, Zürich, Switzerland
                Vanderbilt University, United States of America
                Author notes

                Conceived and designed the experiments: IS SW AK IMM UA. Performed the experiments: IS SW AS. Analyzed the data: IS SW AK UA. Contributed reagents/materials/analysis tools: AK IMM UA. Wrote the paper: IS UA.

                Article
                PONE-D-11-02259
                10.1371/journal.pone.0021325
                3119686
                21712997
                9342f2df-5525-4883-9649-24e3708012d3
                Schmutz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 January 2011
                : 25 May 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Genetics
                Molecular Genetics
                Gene Regulation
                Animal Genetics
                Neuroscience
                Molecular Neuroscience
                Signaling Pathways
                Behavioral Neuroscience
                Zoology
                Animal Behavior

                Uncategorized
                Uncategorized

                Comments

                Comment on this article