8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential of volatile organic compounds as markers of entrapped humans for use in urban search-and-rescue operations

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Volatile organic compounds emitted by a human body form a chemical signature capable of providing invaluable information on the physiological status of an individual and, thereby, could serve as signs-of-life for detecting victims after natural or man-made disasters. In this review a database of potential biomarkers of human presence was created on the basis of existing literature reports on volatiles in human breath, skin emanation, blood, and urine. Approximate fluxes of these species from the human body were estimated and used to predict their concentrations in the vicinity of victims. The proposed markers were classified into groups of different potential for victim detection. The major classification discriminants were the capability of detection by portable, real-time analytical instruments and background levels in urban environment. The data summarized in this review are intended to assist studies on the detection of humans via chemical analysis and accelerate investigations in this area of knowledge.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide in health and disease of the respiratory system.

            During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO synthase (NOS). NOS exists in three distinct isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO derived from the constitutive isoforms of NOS (nNOS and eNOS) and other NO-adduct molecules (nitrosothiols) have been shown to be modulators of bronchomotor tone. On the other hand, NO derived from iNOS seems to be a proinflammatory mediator with immunomodulatory effects. The concentration of this molecule in exhaled air is abnormal in activated states of different inflammatory airway diseases, and its monitoring is potentially a major advance in the management of, e.g., asthma. Finally, the production of NO under oxidative stress conditions secondarily generates strong oxidizing agents (reactive nitrogen species) that may modulate the development of chronic inflammatory airway diseases and/or amplify the inflammatory response. The fundamental mechanisms driving the altered NO bioactivity under pathological conditions still need to be fully clarified, because their regulation provides a novel target in the prevention and treatment of chronic inflammatory diseases of the airways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skin lipids: their biochemical uniqueness.

              Two key words characterize the uniqueness of skin lipids: complexity and perversity. Each suggests a function. Complexity manifests itself in the large number and variety of both saturated and unsaturated fatty chains synthesized by human skin. Functionally, this allows each individual to have a distinct odor or chemical fingerprint. Perversity manifests itself when one compares the lipids synthesized by skin with those synthesized by internal tissues. For example, skin makes odd instead of only even chains, branched instead of only straight chains, free instead of only esterified acids, places double bonds in unusual positions in the fatty chains, extends chains to extreme lengths, and accumulates intermediates in the synthesis of a biologically valuable compound such as cholesterol. Functionally, these products may pose metabolic problems to potential pathogens and thus contribute to the survival of only compatible microorganisms.
                Bookmark

                Author and article information

                Journal
                2015-02-23
                Article
                10.1016/j.trac.2015.02.013
                1502.06485
                9301adf7-b07a-4cdd-b461-28258a7096e2

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Trends in Analytical Chemistry 68, 88-106 (2015)
                38 pages
                q-bio.OT

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article