7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1

      research-article
      1 , 1 , 2 ,
      Aging (Albany NY)
      Impact Journals
      cervical cancer, cyclic RNA, Hsa_circ_0000515, microRNA-326, ELK1

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigates the role of circular RNA (circRNA) hsa_circ_0000515 in cervical cancer and the underlying mechanism associated with microRNA-326 (miR-326). hsa_circ_0000515 and ETS transcription factor ELK1 (ELK1) were initially over-expressed and miR-326 was down-regulated in cervical cancer tissues and cells. Low hsa_circ_0000515 expression was found to be associated with favorable prognosis of patients with cervical cancer. A series of mimics, inhibitors, over-expression plasmids or siRNAs were introduced into cervical cancer cells to alter the expression of hsa_circ_0000515, miR-326 and ELK1. In vitro experiments exhibited that silencing of hsa_circ_0000515 or upregulation of miR-326 resulted in suppressed proliferation and invasion, along with induced apoptosis and autophagy of cervical cancer cells. Dual-luciferase reporter assay, RNA pull-down and RIP assays highlighted that hsa_circ_0000515 was able to act as a ceRNA of miR-326 to increase ELK1. Furthermore, enhancement of ELK1 expression resulted in enhanced proliferation and invasion but repressed apoptosis and autophagy of cervical cancer cells. In vivo experiments further confirmed the suppressed tumor growth by hsa_circ_0000515 silencing. Our findings demonstrated that hsa_circ_0000515 acts as a tumor promoter in cervical cancer. The study provides evidence for targeting hsa_circ_0000515 for therapeutic purposes in treating cervical cancer.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula.

          For quantification of gene-specific mRNA, quantitative real-time RT-PCR has become one of the most frequently used methods over the last few years. This article focuses on the issue of real-time PCR data analysis and its mathematical background, offering a general concept for efficient, fast and precise data analysis superior to the commonly used comparative CT (DeltaDeltaCT) and the standard curve method, as it considers individual amplification efficiencies for every PCR. This concept is based on a novel formula for the calculation of relative gene expression ratios, termed GED (Gene Expression's CT Difference) formula. Prerequisites for this formula, such as real-time PCR kinetics, the concept of PCR efficiency and its determination, are discussed. Additionally, this article offers some technical considerations and information on statistical analysis of real-time PCR data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR‐8075

            In recent years, circular RNAs have been shown to serve as essential regulators in several human cancers. Nevertheless, the function and mechanism of CircRNA in cervical cancer remain elusive. In the present study, we showed that hsa_circRNA_101996 was highly expressed in cervical cancer tissues compared with matched normal tissues by bioinformatics analysis. We showed that the expression level of hsa_circRNA_101996 in cervical cancer tissues was positively correlated with TNM stage, tumor size, and lymph node metastasis. Moreover, higher levels of hsa_circRNA_101996 were related to poor outcomes of cervical cancer patients. We found that knockdown of hsa_circRNA_101996 significantly inhibited the proliferation, cell cycle, migration, and invasion of cervical cancer cells. Mechanistically, we demonstrated that hsa_circRNA_101996 served as a sponge of miR-8075, which targeted TPX2 in cervical cancer cells. We showed that miR-8075 that was downregulated in cervical cancer tissues repressed cervical cancer cell proliferation, migration, and invasion. Furthermore, we validated that upregulation of TPX2 by hsa_circRNA_101996-mediated inhibition of miR-8075 contributed to cervical cancer proliferation, migration, and invasion. Taken together, our findings revealed a novel mechanism that hsa_circRNA_101996-miR-8075-TPX2 network promoted cervical cancer progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microarray is an efficient tool for circRNA profiling

              Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                30 November 2019
                26 November 2019
                : 11
                : 22
                : 9982-9999
                Affiliations
                [1 ]Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
                [2 ]Department of Gynecology and Obstetrics, Wuhan Central Hospital, Wuhan 430014, China
                Author notes
                [*]

                Co-first authors

                Correspondence to: Liangping Zhao; email: zhaoliangping@foxmail.com
                Article
                102356 102356
                10.18632/aging.102356
                6914414
                31772143
                92697440-aec7-4aeb-ac4b-2e612169ce1b
                Copyright © 2019 Tang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 March 2019
                : 03 October 2019
                Categories
                Research Paper

                Cell biology
                cervical cancer,cyclic rna,hsa_circ_0000515,microrna-326,elk1
                Cell biology
                cervical cancer, cyclic rna, hsa_circ_0000515, microrna-326, elk1

                Comments

                Comment on this article