3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Regulation of actin-based apical structures on epithelial cells

      ,
      Journal of Cell Science
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d719533e158">Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P <sub>2</sub>] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes. </p><p class="first" id="d719533e165"> <b>Summary:</b> Apical surfaces of epithelial cells are characterized by the presence of abundant F-actin-based microvilli. We outline recent insights into regulation and maintenance of microvilli and stereocilia. </p>

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          From cells to organs: building polarized tissue.

          How do animal cells assemble into tissues and organs? A diverse array of tissue structures and shapes can be formed by organizing groups of cells into different polarized arrangements and by coordinating their polarity in space and time. Conserved design principles underlying this diversity are emerging from studies of model organisms and tissues. We discuss how conserved polarity complexes, signalling networks, transcription factors, membrane-trafficking pathways, mechanisms for forming lumens in tubes and other hollow structures, and transitions between different types of polarity, such as between epithelial and mesenchymal cells, are used in similar and iterative manners to build all tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular network for de novo generation of the apical surface and lumen.

            To form epithelial organs cells must polarize and generate de novo an apical domain and lumen. Epithelial polarization is regulated by polarity complexes that are hypothesized to direct downstream events, such as polarized membrane traffic, although this interconnection is not well understood. We have found that Rab11a regulates apical traffic and lumen formation through the Rab guanine nucleotide exchange factor (GEF), Rabin8, and its target, Rab8a. Rab8a and Rab11a function through the exocyst to target Par3 to the apical surface, and control apical Cdc42 activation through the Cdc42 GEF, Tuba. These components assemble at a transient apical membrane initiation site to form the lumen. This Rab11a-directed network directs Cdc42-dependent apical exocytosis during lumen formation, revealing an interaction between the machineries of vesicular transport and polarization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Membrane bending by protein-protein crowding.

              Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.
                Bookmark

                Author and article information

                Journal
                Journal of Cell Science
                J Cell Sci
                The Company of Biologists
                0021-9533
                1477-9137
                October 26 2018
                October 15 2018
                October 17 2018
                October 15 2018
                : 131
                : 20
                : jcs221853
                Article
                10.1242/jcs.221853
                6215389
                30333133
                91ec99e7-6f91-4aa2-8477-546149c39b97
                © 2018

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article