15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Apical–basal polarity and the control of epithelial form and function

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references287

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

          Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane fusion: grappling with SNARE and SM proteins.

            The two universally required components of the intracellular membrane fusion machinery, SNARE and SM (Sec1/Munc18-like) proteins, play complementary roles in fusion. Vesicular and target membrane-localized SNARE proteins zipper up into an alpha-helical bundle that pulls the two membranes tightly together to exert the force required for fusion. SM proteins, shaped like clasps, bind to trans-SNARE complexes to direct their fusogenic action. Individual fusion reactions are executed by distinct combinations of SNARE and SM proteins to ensure specificity, and are controlled by regulators that embed the SM-SNARE fusion machinery into a physiological context. This regulation is spectacularly apparent in the exquisite speed and precision of synaptic exocytosis, where synaptotagmin (the calcium-ion sensor for fusion) cooperates with complexin (the clamp activator) to control the precisely timed release of neurotransmitters that initiates synaptic transmission and underlies brain function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation.

              A fundamental question in cell and developmental biology is how epithelial cells construct the diffusion barrier allowing them to separate different body compartments. Formation of tight junction (TJ) strands, which are crucial for this barrier, involves the polymerization of claudins, TJ adhesion molecules, in temporal and spatial manners. ZO-1 and ZO-2 are major PDZ-domain-containing TJ proteins and bind directly to claudins, yet their functional roles are poorly understood. We established cultured epithelial cells (1(ko)/2(kd)) in which the expression of ZO-1/ZO-2 was suppressed by homologous recombination and RNA interference, respectively. These cells were well polarized, except for a complete lack of TJs. When exogenously expressed in 1(ko)/2(kd) cells, ZO-1 and ZO-2 were recruited to junctional areas where claudins were polymerized, but truncated ZO-1 (NZO-1) containing only domains PDZ1-3 was not. When NZO-1 was forcibly recruited to lateral membranes and dimerized, claudins were dramatically polymerized. These findings indicate that ZO-1 and ZO-2 can independently determine whether and where claudins are polymerized.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Molecular Cell Biology
                Nat Rev Mol Cell Biol
                Springer Science and Business Media LLC
                1471-0072
                1471-0080
                April 19 2022
                Article
                10.1038/s41580-022-00465-y
                35440694
                245b6aea-a045-4bb1-9551-89f488975acd
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article