Hazelnut is popular for its flavor, and it has also been suggested that hazelnut is beneficial to cardiovascular health because it is rich in oleic acid. Here, we report the first high-quality chromosome-scale genome for the hazelnut species Corylus mandshurica (2 n = 22), which has a high concentration of oleic acid in its nuts. The assembled genome is 367.67 Mb in length, and the contig N50 is 14.85 Mb. All contigs were assembled into 11 chromosomes, and 28,409 protein-coding genes were annotated. We reconstructed the evolutionary trajectories of the genomes of Betulaceae species and revealed that the 11 chromosomes of the hazelnut genus were derived from the most ancestral karyotype in Betula pendula, which has 14 protochromosomes, by inferring homology among five Betulaceae genomes. We identified 96 candidate genes involved in oleic acid biosynthesis, and 10 showed rapid evolution or positive selection. These findings will help us to understand the mechanisms of lipid synthesis and storage in hazelnuts. Several gene families related to salicylic acid metabolism and stress responses experienced rapid expansion in this hazelnut species, which may have increased its stress tolerance. The reference genome presented here constitutes a valuable resource for molecular breeding and genetic improvement of the important agronomic properties of hazelnut.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.