9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution

          The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO 2 , NO x , CO, NMVOC, NH 3 , PM 10 , PM 2.5 , BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO 2 and NO x ) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM 10 , PM 2.5 ), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions.

            Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources.

              Emission quantification of primary particulate matter (PM) is essential for assessment of its related climate and health impacts. To reduce uncertainty associated with global emissions of PM2.5, PM10, and TSP, we compiled data with high spatial (0.1° × 0.1°) and sectorial (77 primary sources) resolutions for 2007 based on a newly released global fuel data product (PKU-FUEL-2007) and an emission factor database. Our estimates for developing countries are higher than those previously reported. Spatial bias associated with large countries could be reduced by using subnational fuel consumption data. Additionally, we looked at temporal trends from 1960 to 2009 at country-scale resolution. Although total emissions are still increasing in developing countries, their intensities in terms of gross domestic production or energy consumption have decreased. PM emitted in developed countries is finer owing to a larger contribution from nonindustrial sources and use of abatement technologies. In contrast, countries like China, with strong industry emissions and limited abatement facilities, emit coarser PM. The health impacts of PM are intensified in hotspots and cities owing to covariance of sources and receptors. Although urbanization reduces the per person emission, overall health impacts related to these emissions are heightened because of aggregation effects.
                Bookmark

                Author and article information

                Journal
                Nature Energy
                Nat Energy
                Springer Nature
                2058-7546
                May 14 2018
                Article
                10.1038/s41560-018-0158-4
                91595f4b-a037-4873-8094-a3f1f9958160
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article