The genus Crepis constitutes cold-adapted plant spp., of these some are traditionally used in folk medicine against inflammation or fungal infections without scientific validations. Here, we report the biological activities of Crepis flexuosa total ethanol-extract (CF-EtOH) and its hexane (CF-Hex), ethyl acetate (CF-EtOA), butanol (CF-ButOH), and aqueous (CF-Aqua) fractions. Our in vitro DPPH and ABTS radical-scavenging assays showed CF-EtOH, CF-ButOH and CF-Aqua with maximal, CF-EtOA with moderate, and CF-Hex with mild anti-oxidant activities. When tested on human cancer cell lines, high cytotoxicity was demonstrated by CF-EtOH (IC 50: 42.45 μg/ml) and CF-Aqua (IC 50: 46.37 μg/ml) on HepG2, followed by CF-Hex (IC 50: 63.24 μg/ml) and CF-ButOH (IC 50: 65.32 μg/ml) on MCF7 cells. The human primary cell line (HUVEC) had comparatively lower cytotoxicity for the tested samples. Moreover, when assessed for anti-microbial efficacy, CF-ButOH and CF-Aqua exhibited the strongest activity (MIC: 156.25 μg/ml) against S. aureus, E. faecalis and C. albicans. Further, while the developed RP-HPTLC identified the bioactive flavonoid luteolin-7- O-glucoside (17.58 mg/g), GS/MS analysis revealed sixteen compounds in C. flexuosa extract. In conclusion, we for the first time show the promising anti-oxidative, anti-cell proliferative and anti-microbial efficacies of C. flexuosa. This warrants further phytochemical and bio-efficacy studies towards isolations and identifications of active principles.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.