0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis

      ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Co-infections in people with COVID-19: a systematic review and meta-analysis

          Highlights • SARS-CoV-2, the cause of COVID19 disease, has spread globally since late 2019 • Bacterial coinfections associated with mortality in previous influenza pandemics • Proportion of COVID19 patients with bacterial coinfection less than in flu pandemics • Higher proportion of critically-ill with bacterial coinfections than in mixed setting • Bacterial co-pathogen profiles different to those in influenza co-infections • Fungal coinfection diagnosis difficult so high level suspicion in critically-ill
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism

            The human gut microbiota metabolizes the Parkinson’s disease medication Levodopa (L-dopa), potentially reducing drug availability and causing side effects. However, the organisms, genes, and enzymes responsible for this activity in patients and their susceptibility to inhibition by host-targeted drugs are unknown. Here, we describe an interspecies pathway for gut bacterial L-dopa metabolism. Conversion of L-dopa to dopamine by a pyridoxal phosphate-dependent tyrosine decarboxylase from Enterococcus faecalis is followed by transformation of dopamine to m-tyramine by a molybdenum-dependent dehydroxylase from Eggerthella lenta. These enzymes predict drug metabolism in complex human gut microbiotas. Although a drug that targets host aromatic amino acid decarboxylase does not prevent gut microbial L-dopa decarboxylation, we identified a compound that inhibits this activity in Parkinson’s patient microbiotas and increases L-dopa bioavailability in mice. INTRODUCTION Parkinson’s disease is a debilitating neurological condition affecting more than 1% of the global population aged 60 and above. The primary medication used to treat Parkinson’s disease is levodopa (L-dopa). To be effective, L-dopa must enter the brain and be converted to the neurotransmitter dopamine by the human enzyme aromatic amino acid decarboxylase (AADC). However, the gastro-intestinal tract is also a major site for L-dopa decarboxylation, and this metabolism is problematic because dopamine generated in the periphery cannot cross the blood-brain barrier and causes unwanted side effects. Thus, L-dopa is coadministered with drugs that block pe-ripheral metabolism, including the AADC in-hibitor carbidopa. Even with these drugs, up to 56% of L-dopa fails to reach the brain. Moreover, the efficacy and side effects of L-dopa treatment are extremely heterogeneous across Parkinson’s patients, and this variability cannot be completely explained by differences in host metabolism RATIONALE Previous studies in humans and animal models have demonstrated that the gut microbiota can metabolize L-dopa. The major proposed pathway involves an initial decarboxylation of L-dopa to dopamine, followed by conversion of dopamine to m-tyramine by means of a distinctly microbial dehydroxylation reaction. Although these metabolic activities were shown to occur in complex gut microbiota samples, the specific organisms, gene, and enzymes responsible were unknown. The effects of host-targeted inhibitors such as carbidopa on gut microbial L-dopa metabolism were also unclear. As a first step toward understanding the gut microbiota’s effect on Parkinson’s disease therapy, we sought to elucidate the molecular basis for gut microbial L-dopa and dopamine metabolism. RESULTS Hypothesizing that L-dopa decarboxylation would require a pyridoxal phosphate (PLP)–dependent enzyme, we searched gut bacterial genomes for candidates and identified a conserved tyrosine decarboxylase (TyrDC) in Enterococcus faecalis. Genetic and biochemical experiments revealed that TyrDC simultaneously decarboxylates both L-dopa and its preferred substrate, tyrosine. Next, we used enrichment culturing to isolate a dopamine dehydroxylating strain of Eggerthella lenta, a species previously implicated in drug metabolism. Transcriptomics linked this activity to a molybdenum cofactor–dependent dopamine dehydroxylase (Dadh) enzyme. Unexpectedly, the presence of this enzyme in gut bacterial genomes did not correlate with dopamine metabolism; instead, we identified a single-nucleotide polymorphism (SNP) in the dadh gene that predicts activity. The abundance of E. faecalis, tyrDC, and the individual SNPs of dadh correlated with L-dopa and dopamine metabolism in complex gut microbiotas from Parkinson’s patients, indicating that these organisms, genes, enzymes, and even nucleotides are relevant in this setting. We then tested whether the host-targeted AADC inhibitor carbidopa affected L-dopa decarboxylation by E. faecalis TyrDC. Carbidopa displayed greatly reduced potency toward bacteria and was completely ineffective in complex gut microbiotas from Parkinson’s patients, suggesting that this drug likely does not prevent microbial L-dopa metabolism in vivo. To identify a selective inhibitor of gut bacterial L-dopa decarboxylation, we leveraged our molecular understanding of gut microbial L-dopa metabolism. Given TyrDC’s preference for tyrosine, we examined tyrosine mimics and found that (S)-α-fluoromethyltyrosine (AFMT) prevented L-dopa decarboxylation by TyrDC and E. faecalis as well as complex gut microbiota samples from Parkinson’s patients. Coadministering AFMT with L-dopa and carbidopa to mice colonized with E. faecalis also increased the peak serum concentration of L-dopa. This observation is consistent with inhibition of gut microbial L-dopa metabolism in vivo. CONCLUSION We have characterized an interspecies pathway for gut bacterial L-dopa metabolism and demonstrated its relevance in human gut microbiotas. Variations in these microbial activities could possibly contribute to the heterogeneous responses to L-dopa observed among patients, including decreased efficacy and harmful side effects. Our findings will enable efforts to elucidate the gut microbiota’s contribution to treatment outcomes and highlight the promise of developing therapies that target both host and gut microbial drug metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molybdenum cofactors, enzymes and pathways.

              The trace element molybdenum is essential for nearly all organisms and forms the catalytic centre of a large variety of enzymes such as nitrogenase, nitrate reductases, sulphite oxidase and xanthine oxidoreductases. Nature has developed two scaffolds holding molybdenum in place, the iron-molybdenum cofactor and pterin-based molybdenum cofactors. Despite the different structures and functions of molybdenum-dependent enzymes, there are important similarities, which we highlight here. The biosynthetic pathways leading to both types of cofactor have common mechanistic aspects relating to scaffold formation, metal activation and cofactor insertion into apoenzymes, and have served as an evolutionary 'toolbox' to mediate additional cellular functions in eukaryotic metabolism.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                November 2023
                November 07 2023
                : 28
                : 22
                : 7456
                Article
                10.3390/molecules28227456
                906fea80-2542-451c-9850-0778529d15e2
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article