41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oncolytic strains of vaccinia virus are currently in clinical development with clear evidence of safety and promising signs of efficacy. Addition of therapeutic genes to the viral genome may increase the therapeutic efficacy of vaccinia. We evaluated the therapeutic potential of vaccinia virus expressing the sodium iodide symporter (NIS) in prostate cancer models, combining oncolysis, external beam radiotherapy and NIS-mediated radioiodide therapy. The NIS-expressing vaccinia virus (VV-NIS), GLV-1h153, was tested in in vitro analyzes of viral cell killing, combination with radiotherapy, NIS expression, cellular radioiodide uptake and apoptotic cell death in PC3, DU145, LNCaP and WPMY-1 human prostate cell lines. In vivo experiments were carried out in PC3 xenografts in CD1 nude mice to assess NIS expression and tumor radioiodide uptake. In addition, the therapeutic benefit of radioiodide treatment in combination with viral oncolysis and external beam radiotherapy was measured. In vitro viral cell killing of prostate cancers was dose- and time-dependent and was through apoptotic mechanisms. Importantly, combined virus therapy and iodizing radiation did not adversely affect oncolysis. NIS gene expression in infected cells was functional and mediated uptake of radioiodide both in vitro and in vivo. Therapy experiments with both xenograft and immunocompetent Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse models showed that the addition of radioiodide to VV-NIS-infected tumors was more effective than each single-agent therapy, restricting tumor growth and increasing survival. In conclusion, VV-NIS is effective in prostate cancer models. This treatment modality would be an attractive complement to existing clinical radiotherapy practice.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study.

          Abiraterone acetate improved overall survival in metastatic castration-resistant prostate cancer at a preplanned interim analysis of the COU-AA-301 double-blind, placebo-controlled phase 3 study. Here, we present the final analysis of the study before crossover from placebo to abiraterone acetate (after 775 of the prespecified 797 death events). Between May 8, 2008, and July 28, 2009, this study enrolled 1195 patients at 147 sites in 13 countries. Patients were eligible if they had metastatic castration-resistant prostate cancer progressing after docetaxel. Patients were stratified according to baseline Eastern Cooperative Oncology Group (ECOG) performance status, worst pain over the past 24 h on the Brief Pain Inventory-Short Form, number of previous chemotherapy regimens, and type of progression. Patients were randomly assigned (ratio 2:1) to receive either abiraterone acetate (1000 mg, once daily and orally) plus prednisone (5 mg, orally twice daily) or placebo plus prednisone with a permuted block method via an interactive web response system. The primary endpoint was overall survival, analysed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT00091442. Of the 1195 eligible patients, 797 were randomly assigned to receive abiraterone acetate plus prednisone (abiraterone group) and 398 to receive placebo plus prednisone (placebo group). At median follow-up of 20·2 months (IQR 18·4-22·1), median overall survival for the abiraterone group was longer than in the placebo group (15·8 months [95% CI 14·8-17·0] vs 11·2 months [10·4-13·1]; hazard ratio [HR] 0·74, 95% CI 0·64-0·86; p<0·0001). Median time to PSA progression (8·5 months, 95% CI 8·3-11·1, in the abiraterone group vs 6·6 months, 5·6-8·3, in the placebo group; HR 0·63, 0·52-0·78; p<0·0001), median radiologic progression-free survival (5·6 months, 5·6-6·5, vs 3·6 months, 2·9-5·5; HR 0·66, 0·58-0·76; p<0·0001), and proportion of patients who had a PSA response (235 [29·5%] of 797 patients vs 22 [5·5%] of 398; p<0·0001) were all improved in the abiraterone group compared with the placebo group. The most common grade 3-4 adverse events were fatigue (72 [9%] of 791 patients in the abiraterone group vs 41 [10%] of 394 in the placebo group), anaemia (62 [8%] vs 32 [8%]), back pain (56 [7%] vs 40 [10%]), and bone pain (51 [6%] vs 31 [8%]). This final analysis confirms that abiraterone acetate significantly prolongs overall survival in patients with metastatic castration-resistant prostate cancer who have progressed after docetaxel treatment. No new safety signals were identified with increased follow-up. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The formation and function of extracellular enveloped vaccinia virus.

            Vaccinia virus produces four different types of virion from each infected cell called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). These virions have different abundance, structure, location and roles in the virus life-cycle. Here, the formation and function of these virions are considered with emphasis on the EEV form and its precursors, IEV and CEV. IMV is the most abundant form of virus and is retained in cells until lysis; it is a robust, stable virion and is well suited to transmit infection between hosts. IEV is formed by wrapping of IMV with intracellular membranes, and is an intermediate between IMV and CEV/EEV that enables efficient virus dissemination to the cell surface on microtubules. CEV induces the formation of actin tails that drive CEV particles away from the cell and is important for cell-to-cell spread. Lastly, EEV mediates the long-range dissemination of virus in cell culture and, probably, in vivo. Seven virus-encoded proteins have been identified that are components of IEV, and five of them are present in CEV or EEV. The roles of these proteins in virus morphogenesis and dissemination, and as targets for neutralizing antibody are reviewed. The production of several different virus particles in the VV replication cycle represents a coordinated strategy to exploit cell biology to promote virus spread and to aid virus evasion of antibody and complement.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              China approves world's first oncolytic virus therapy for cancer treatment.

              Ken Garber (2006)
                Bookmark

                Author and article information

                Journal
                Gene Ther
                Gene Ther
                Gene Therapy
                Nature Publishing Group
                0969-7128
                1476-5462
                April 2016
                27 January 2016
                18 February 2016
                : 23
                : 4
                : 357-368
                Affiliations
                [1 ]Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs , London, UK
                [2 ]Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital , Leeds, UK
                [3 ]Molecular Medicine Program, Mayo Clinic , Rochester, MN, USA
                [4 ]Postgraduate Medical School, The University of Surrey , Guildford, UK
                [5 ]The Royal Marsden Hospital , London, UK
                [6 ]University of Melbourne and Monash University , Victoria, Australia
                Author notes
                [* ]Divisions of Cancer Biology and Radiotherapy and Imaging, The Institute of Cancer Research, Chester Beatty Labs , 237 Fulham Road, London SW3 6JB, UK. E-mail: david.mansfield@ 123456icr.ac.uk
                [7]

                Joint senior authors.

                Article
                gt20165
                10.1038/gt.2016.5
                4827015
                26814609
                8fba4e6d-327d-4d90-aa13-d8635847f21f
                Copyright © 2016 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 July 2015
                : 07 December 2015
                : 13 January 2016
                Categories
                Original Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article