4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antioxidant, Lipoxygenase and Histone Deacetylase Inhibitory Activities of Acridocarbus orientalis From Al Ain and Oman

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acridocarpus orientalis (AO) is a traditional medicinal plant used for treatment of inflammatory diseases that may have potential in cancer treatment. In the present study, the aqueous ethanolic crude extract of Acridocarpus aerial parts obtained from Al Ain and Oman were evaluated for their antioxidant capability, polyphenolic content, anti-lipoxygenase and anti-histone deacetylase (HDAC) properties. The total antioxidant capacity was estimated by the FRAP, DPPH, ABTS and β-carotene bleaching assays. Acridocarpus-Al Ain exhibited the highest polyphenolic content (184.24 mg gallic acid/g) and the best antioxidant activity (1.1, 1.04, 1.14 mmol ascorbic acid equivalent/g in the FRAP, ABTS and DPPH assays, respectively). Additionally, the same extract showed significant anti-inflammatory properties via lipoxygenase (LOX) inhibitory activity (IC 50 = 50.58 µg/mL). Acridocarpus-Al Ain also showed the strongest histone deacetylase (HDACs) inhibitory activity (IC 50 = 93.28 µg/mL). The results reported here suggest that there was a significant influence of location and the plant may be considered a good source of compounds with antioxidant, anti-LOX and HDAC properties for therapeutic, nutraceutical and functional food applications.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids: antioxidants or signalling molecules?

          Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Antioxidant activity and phenolic compounds in 32 selected herbs

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenolics as potential antioxidant therapeutic agents: mechanism and actions.

              Accumulating chemical, biochemical, clinical and epidemiological evidence supports the chemoprotective effects of phenolic antioxidants against oxidative stress-mediated disorders. The pharmacological actions of phenolic antioxidants stem mainly from their free radical scavenging and metal chelating properties as well as their effects on cell signaling pathways and on gene expression. The antioxidant capacities of phenolic compounds that are widely distributed in plant-based diets were assessed by the Trolox equivalent antioxidant capacity (TEAC), the ferric reducing antioxidant power (FRAP), the hypochlorite scavenging capacity, the deoxyribose method and the copper-phenanthroline-dependent DNA oxidation assays. Based on the TEAC, FRAP and hypochlorite scavenging data, the observed activity order was: procyanidin dimer>flavanol>flavonol>hydroxycinnamic acids>simple phenolic acids. Among the flavonol aglycones, the antioxidant propensities decrease in the order quercetin, myricetin and kaempferol. Gallic acid and rosmarinic acid were the most potent antioxidants among the simple phenolic and hydroxycinnamic acids, respectively. Ferulic acid displayed the highest inhibitory activity against deoxyribose degradation but no structure-activity relationship could be established for the activities of the phenolic compounds in the deoxyribose assay. The efficacies of the phenolic compounds differ depending on the mechanism of antioxidant action in the respective assay used, with procyanidin dimers and flavan-3-ols showing very potent activities in most of the systems tested. Compared to the physiologically active (glutathione, alpha-tocopherol, ergothioneine) and synthetic (Trolox, BHA, BHT) antioxidants, these compounds exhibited much higher efficacy. Plant-derived phenolics represents good sources of natural antioxidants, however, further investigation on the molecular mechanism of action of these phytochemicals is crucial to the evaluation of their potential as prophylactic agents.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                24 October 2012
                November 2012
                : 17
                : 11
                : 12521-12532
                Affiliations
                [1 ]Department of Biology, Faculty of Science, U.A.E. University, Al-Ain, P.O. Box 17551, UAE; Email: allaaeldin.hamza@ 123456uaeu.ac.ae
                [2 ]National Organization of Drug Control and Research, 6 Abu Hazem St., Giza, 12613, Egypt
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: tksiksi@ 123456uacu.ac.ae ; Tel.: +971-3-713-6135; Fax: +971-3-713-1291.
                Article
                molecules-17-12521
                10.3390/molecules171112521
                6268325
                23095895
                8f0aa727-2274-4fbe-b63f-2d26e26778ae
                © 2012 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 05 July 2012
                : 03 September 2012
                : 20 September 2012
                Categories
                Article

                acridocarpus orientalis,total phenol,antioxidant,anti-lipoxygenase,anti-histone deacetylase activity

                Comments

                Comment on this article

                scite_
                20
                1
                13
                0
                1
                Smart Citations
                This paper has 1 erratum
                20
                1
                13
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content389

                Cited by6

                Most referenced authors673