30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation and Bioactivities of the Flavonoids Morin and Morin-3- O-β-D-glucopyranoside from Acridocarpus orientalis—A Wild Arabian Medicinal Plant

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acridocarpus orientalis is an important medicinal plant for some of the locals of Arabian region. Very little is known about its phytochemical constituents. In the present study, we aimed to isolate bioactive chemicals from the crude methanolic extract of the aerial parts of A. orientalis. The extraction and isolation resulted in the purification of two flavonoids: morin ( 1) and morin-3- O-β-D-glucopyranoside ( 2). The structure elucidation was carried out by extensive analysis of spectroscopic data and comparison with the reported data for the known constituents. The pure isolates were subjected to various biological assays for their bioactivities. The compounds 1 and 2 were significantly active against the growth of various pathogenic fungi and phytotoxic against lettuce seed at higher concentrations. Furthermore, the free radical scavenging activities, anti-lipid peroxidation, and cytotoxic effects against HepG2, HT29, and HCT116 cancer cell lines were also assayed and the results are presented in this paper.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids: antioxidants or signalling molecules?

          Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phenolics as potential antioxidant therapeutic agents: mechanism and actions.

            Accumulating chemical, biochemical, clinical and epidemiological evidence supports the chemoprotective effects of phenolic antioxidants against oxidative stress-mediated disorders. The pharmacological actions of phenolic antioxidants stem mainly from their free radical scavenging and metal chelating properties as well as their effects on cell signaling pathways and on gene expression. The antioxidant capacities of phenolic compounds that are widely distributed in plant-based diets were assessed by the Trolox equivalent antioxidant capacity (TEAC), the ferric reducing antioxidant power (FRAP), the hypochlorite scavenging capacity, the deoxyribose method and the copper-phenanthroline-dependent DNA oxidation assays. Based on the TEAC, FRAP and hypochlorite scavenging data, the observed activity order was: procyanidin dimer>flavanol>flavonol>hydroxycinnamic acids>simple phenolic acids. Among the flavonol aglycones, the antioxidant propensities decrease in the order quercetin, myricetin and kaempferol. Gallic acid and rosmarinic acid were the most potent antioxidants among the simple phenolic and hydroxycinnamic acids, respectively. Ferulic acid displayed the highest inhibitory activity against deoxyribose degradation but no structure-activity relationship could be established for the activities of the phenolic compounds in the deoxyribose assay. The efficacies of the phenolic compounds differ depending on the mechanism of antioxidant action in the respective assay used, with procyanidin dimers and flavan-3-ols showing very potent activities in most of the systems tested. Compared to the physiologically active (glutathione, alpha-tocopherol, ergothioneine) and synthetic (Trolox, BHA, BHT) antioxidants, these compounds exhibited much higher efficacy. Plant-derived phenolics represents good sources of natural antioxidants, however, further investigation on the molecular mechanism of action of these phytochemicals is crucial to the evaluation of their potential as prophylactic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy.

              Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                31 October 2014
                November 2014
                : 19
                : 11
                : 17763-17772
                Affiliations
                [1 ]Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman
                [2 ]UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman; E-Mails: malikhejric@ 123456gmail.com (L.A.); abdullatif@ 123456unizwa.edu.om (A.L.K.); najeeb@ 123456unizwa.edu.om (N.U.R.); fjabeen2009@ 123456yahoo.com (F.J.)
                [3 ]School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea; E-Mail: jongsangkim@ 123456gmail.com
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: javidhej@ 123456unizwa.edu.om (J.H.); aharrasi@ 123456unizwa.edu.om (A.A.-H.); Tel.: +968-2544-6705 (J.H.); +968-2544-6328 (A.A.-H.); Fax: +968-2544-6289 (A.A.-H.).
                Article
                molecules-19-17763
                10.3390/molecules191117763
                6271336
                25421414
                4ccb96e0-d604-41f8-9c25-7b66e9e1a177
                © 2014 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 July 2014
                : 20 October 2014
                : 21 October 2014
                Categories
                Communication

                flavonoid,morin,acridocarpus orientalis,malpighiaceae,antioxidant,lipid peroxidation,cytotoxicity

                Comments

                Comment on this article