24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Potent antiviral effect of silver nanoparticles on SARS-CoV-2

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pandemic of COVID-19 is spreading unchecked due to the lack of effective antiviral measures. Silver nanoparticles (AgNP) have been studied to possess antiviral properties and are presumed to inhibit SARS-CoV-2. Due to the need for an effective agent against SARS-CoV-2, we evaluated the antiviral effect of AgNPs. We evaluated a plethora of AgNPs of different sizes and concentration and observed that particles of diameter around 10 nm were effective in inhibiting extracellular SARS-CoV-2 at concentrations ranging between 1 and 10 ppm while cytotoxic effect was observed at concentrations of 20 ppm and above. Luciferase-based pseudovirus entry assay revealed that AgNPs potently inhibited viral entry step via disrupting viral integrity. These results indicate that AgNPs are highly potent microbicides against SARS-CoV-2 but should be used with caution due to their cytotoxic effects and their potential to derange environmental ecosystems when improperly disposed.

          Highlights

          • Silver nanoparticles inhibit extracellular SARS-CoV-2.

          • 2–15 nm size particles showed robust inhibition of SARS-CoV-2.

          • SARS-CoV-2 was potently inhibited at concentrations above 1 ppm.

          • Naked Silver nanoparticles exhibited cytotoxicity from 20 ppm onwards.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing

          SUMMARY The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells

            A novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused a large respiratory outbreak in Wuhan, China in December 2019, is currently spreading across many countries globally. Here, we show that a TMPRSS2-expressing VeroE6 cell line is highly susceptible to SARS-CoV-2 infection, making it useful for isolating and propagating SARS-CoV-2. Our results reveal that, in common with SARS- and Middle East respiratory syndrome-CoV, SARS-CoV-2 infection is enhanced by TMPRSS2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interaction of silver nanoparticles with HIV-1

              The interaction of nanoparticles with biomolecules and microorganisms is an expanding field of research. Within this field, an area that has been largely unexplored is the interaction of metal nanoparticles with viruses. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with HIV-1, with nanoparticles exclusively in the range of 1–10 nm attached to the virus. The regular spatial arrangement of the attached nanoparticles, the center-to-center distance between nanoparticles, and the fact that the exposed sulfur-bearing residues of the glycoprotein knobs would be attractive sites for nanoparticle interaction suggest that silver nanoparticles interact with the HIV-1 virus via preferential binding to the gp120 glycoprotein knobs. Due to this interaction, silver nanoparticles inhibit the virus from binding to host cells, as demonstrated in vitro.
                Bookmark

                Author and article information

                Journal
                Biochem Biophys Res Commun
                Biochem. Biophys. Res. Commun
                Biochemical and Biophysical Research Communications
                Elsevier Inc.
                0006-291X
                1090-2104
                11 September 2020
                11 September 2020
                Affiliations
                [a ]Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
                [b ]Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa, 259-1146, Japan
                Author notes
                []Corresponding author. Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
                Article
                S0006-291X(20)31757-5
                10.1016/j.bbrc.2020.09.018
                7486059
                32958250
                8ea2753c-bf19-4802-8761-8eb702906ff4
                © 2020 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 4 September 2020
                : 8 September 2020
                Categories
                Article

                Biochemistry
                silver nanoparticles,colloidal silver,sars-cov-2,covid-19
                Biochemistry
                silver nanoparticles, colloidal silver, sars-cov-2, covid-19

                Comments

                Comment on this article