3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex differences in the immune response to acute COVID-19 respiratory tract infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sex differences in COVID-19 are increasingly recognized globally. Although infection rates are similar between the sexes, men have more severe illness. The mechanism underlying these sex differences is unknown, but a differential immune response to COVID-19 has been implicated in several recent studies. However, how sex differences shape the immune response to COVID-19 remains understudied.

          Methods

          We collected demographics and blood samples from over 600 hospitalized patients diagnosed with COVID-19 from May 24th 2020 to April 28th, 2021. These patients were divided into two cohorts: Cohort 1 was further classified into three groups based on the severity of the disease (mild, moderate and severe); Cohort 2 patients were longitudinally followed at three time points from hospital admission (1 day, 7 days, and 14 days). MultiPlex and conventional ELISA were used to examine inflammatory mediator levels in the plasma in both cohorts. Flow cytometry was conducted to examine leukocyte responses in Cohort 2.

          Results

          There were more COVID + males in the total cohort, and the mortality rate was higher in males vs. females. More male patients were seen in most age groups (in 10-year increments), and in most ethnic groups. Males with severe disease had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) than females; levels of IL-8, GRO, sCD40L, MIP-1β, MCP-1 were also significantly higher in severe vs. mild or control patients in males but not in females. Females had significantly higher anti-inflammatory cytokine IL-10 levels at 14 days compared to males, and the level of IL-10 significantly increased in moderate vs. the control group in females but not in males. At 7 days and 14 days, males had significantly more circulating neutrophils and monocytes than females; however, B cell numbers were significantly higher in females vs. males.

          Conclusion

          Sex differences exist in hospitalized patients with acute COVID-19 respiratory tract infection. Exacerbated inflammatory responses were seen in male vs. female patients, even when matched for disease severity. Males appear to have a more robust innate immune response, and females mount a stronger adaptive immune response to COVID-19 respiratory tract infection.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13293-021-00410-2.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

            Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive immunity to SARS-CoV-2 and COVID-19

              The adaptive immune system is important for control of most viral infections. The three fundamental components of the adaptive immune system are B cells (the source of antibodies), CD4+ T cells, and CD8+ T cells. The armamentarium of B cells, CD4+ T cells, and CD8+ T cells has differing roles in different viral infections, and in vaccines, and thus it is critical to directly study adaptive immunity to SARS-CoV-2 to understand COVID-19. Knowledge is now available on relationships between antigen-specific immune responses and SARS-CoV-2 infection. While more studies are needed, a picture has begun to emerge that reveals that CD4+ T cells, CD8+ T cells, and neutralizing antibodies all contribute to control of SARS-CoV-2, in both non-hospitalized and hospitalized cases of COVID-19. The specific functions and kinetics of these adaptive immune responses are discussed, as well as their interplay with innate immunity and implications for COVID-19 vaccines and immune memory against re-infection.
                Bookmark

                Author and article information

                Contributors
                Fudong.Liu@uth.tmc.edu
                Journal
                Biol Sex Differ
                Biol Sex Differ
                Biology of Sex Differences
                BioMed Central (London )
                2042-6410
                20 December 2021
                20 December 2021
                2021
                : 12
                : 66
                Affiliations
                [1 ]GRID grid.267308.8, ISNI 0000 0000 9206 2401, Department of Neurology, McGovern Medical School, , The University of Texas Health Science Center at Houston, ; 6431 Fannin Street, Houston, TX 77030 USA
                [2 ]GRID grid.267308.8, ISNI 0000 0000 9206 2401, Department of Neurosurgery, McGovern Medical School, , The University of Texas Health Science Center at Houston, ; 6431 Fannin Street, Houston, TX 77030 USA
                Author information
                http://orcid.org/0000-0002-7684-9428
                Article
                410
                10.1186/s13293-021-00410-2
                8686792
                34930441
                8e61384a-41b1-40d7-ae63-c7ae01df2cf8
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 1 July 2021
                : 13 December 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01 MH127856
                Award ID: R01 NS108779
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Human biology
                covid-19,cytokine,leukocytes,immune response,sex difference
                Human biology
                covid-19, cytokine, leukocytes, immune response, sex difference

                Comments

                Comment on this article