8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome editing therapy for Duchenne muscular dystrophy (DMD) holds great promise, however, one major obstacle is delivery of the CRISPR-Cas9/sgRNA system to skeletal muscle tissues. In general, AAV vectors are used for in vivo delivery, but AAV injections cannot be repeated because of neutralization antibodies. Here we report a chemically defined lipid nanoparticle (LNP) system which is able to deliver Cas9 mRNA and sgRNA into skeletal muscle by repeated intramuscular injections. Although the expressions of Cas9 protein and sgRNA were transient, our LNP system could induce stable genomic exon skipping and restore dystrophin protein in a DMD mouse model that harbors a humanized exon sequence. Furthermore, administration of our LNP via limb perfusion method enables to target multiple muscle groups. The repeated administration and low immunogenicity of our LNP system are promising features for a delivery vehicle of CRISPR-Cas9 to treat skeletal muscle disorders.

          Abstract

          In vivo delivery of CRISPR-Cas9 holds promise for treating muscular dystrophy, however, AAV delivery is known to be immunogenic. Here, the authors show that LNP delivery of CRISPR-Cas9 enables repeated injections into skeletal muscle and leads to restored dystrophin expression in multiple muscle groups.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          An mRNA Vaccine against SARS-CoV-2 — Preliminary Report

          Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. Methods We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 μg, 100 μg, or 250 μg. There were 15 participants in each dose group. Results After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti–S-2P antibody geometric mean titer [GMT], 40,227 in the 25-μg group, 109,209 in the 100-μg group, and 213,526 in the 250-μg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-μg dose group reported one or more severe adverse events. Conclusions The mRNA-1273 vaccine induced anti–SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 ClinicalTrials.gov number, NCT04283461).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates

            Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the resulting disease, coronavirus disease 2019 (Covid-19), have spread to millions of persons worldwide. Multiple vaccine candidates are under development, but no vaccine is currently available. Interim safety and immunogenicity data about the vaccine candidate BNT162b1 in younger adults have been reported previously from trials in Germany and the United States. Methods In an ongoing, placebo-controlled, observer-blinded, dose-escalation, phase 1 trial conducted in the United States, we randomly assigned healthy adults 18 to 55 years of age and those 65 to 85 years of age to receive either placebo or one of two lipid nanoparticle–formulated, nucleoside-modified RNA vaccine candidates: BNT162b1, which encodes a secreted trimerized SARS-CoV-2 receptor–binding domain; or BNT162b2, which encodes a membrane-anchored SARS-CoV-2 full-length spike, stabilized in the prefusion conformation. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. Trial groups were defined according to vaccine candidate, age of the participants, and vaccine dose level (10 μg, 20 μg, 30 μg, and 100 μg). In all groups but one, participants received two doses, with a 21-day interval between doses; in one group (100 μg of BNT162b1), participants received one dose. Results A total of 195 participants underwent randomization. In each of 13 groups of 15 participants, 12 participants received vaccine and 3 received placebo. BNT162b2 was associated with a lower incidence and severity of systemic reactions than BNT162b1, particularly in older adults. In both younger and older adults, the two vaccine candidates elicited similar dose-dependent SARS-CoV-2–neutralizing geometric mean titers, which were similar to or higher than the geometric mean titer of a panel of SARS-CoV-2 convalescent serum samples. Conclusions The safety and immunogenicity data from this U.S. phase 1 trial of two vaccine candidates in younger and older adults, added to earlier interim safety and immunogenicity data regarding BNT162b1 in younger adults from trials in Germany and the United States, support the selection of BNT162b2 for advancement to a pivotal phase 2–3 safety and efficacy evaluation. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis

              Patisiran, an investigational RNA interference therapeutic agent, specifically inhibits hepatic synthesis of transthyretin.
                Bookmark

                Author and article information

                Contributors
                akitsu.hotta@cira.kyoto-u.ac.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                8 December 2021
                8 December 2021
                2021
                : 12
                : 7101
                Affiliations
                [1 ]GRID grid.419841.1, ISNI 0000 0001 0673 6017, T-CiRA Discovery, Takeda Pharmaceutical Company Limited, ; 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
                [2 ]Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan
                [3 ]GRID grid.258799.8, ISNI 0000 0004 0372 2033, Center for iPS Cell Research and Application (CiRA), Kyoto University, ; 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
                [4 ]GRID grid.419841.1, ISNI 0000 0001 0673 6017, Drug Product Development, Pharmaceutical Sciences, , Takeda Pharmaceutical Company Limited, ; 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
                [5 ]GRID grid.419841.1, ISNI 0000 0001 0673 6017, Drug Safety Research and Evaluation, , Takeda Pharmaceutical Company Limited, ; 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
                Author information
                http://orcid.org/0000-0002-3176-2206
                http://orcid.org/0000-0002-9566-8286
                http://orcid.org/0000-0003-2331-3723
                http://orcid.org/0000-0002-2619-7441
                Article
                26714
                10.1038/s41467-021-26714-w
                8654819
                34880218
                8e200b87-62e7-4630-bb8d-614d2542d6e1
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 February 2021
                : 21 October 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/100009619, Japan Agency for Medical Research and Development (AMED);
                Award ID: JP20im0210115
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                targeted gene repair,neuromuscular disease,nanoparticles
                Uncategorized
                targeted gene repair, neuromuscular disease, nanoparticles

                Comments

                Comment on this article