10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrokinetic Properties of TiO 2 Nanotubular Surfaces

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO 2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10 −3 M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Ti based biomaterials, the ultimate choice for orthopaedic implants – A review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advancing dental implant surface technology--from micron- to nanotopography.

            Current trends in clinical dental implant therapy include use of endosseous dental implant surfaces embellished with nanoscale topographies. The goal of this review is to consider the role of nanoscale topographic modification of titanium substrates for the purpose of improving osseointegration. Nanotechnology offers engineers and biologists new ways of interacting with relevant biological processes. Moreover, nanotechnology has provided means of understanding and achieving cell specific functions. The various techniques that can impart nanoscale topographic features to titanium endosseous implants are described. Existing data supporting the role of nanotopography suggest that critical steps in osseointegration can be modulated by nanoscale modification of the implant surface. Important distinctions between nanoscale and micron-scale modification of the implant surface are presently considered. The advantages and disadvantages of nanoscale modification of the dental implant surface are discussed. Finally, available data concerning the current dental implant surfaces that utilize nanotopography in clinical dentistry are described. Nanoscale modification of titanium endosseous implant surfaces can alter cellular and tissue responses that may benefit osseointegration and dental implant therapy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Engineering biocompatible implant surfaces

                Bookmark

                Author and article information

                Contributors
                ales.iglic@fe.uni-lj.si
                Journal
                Nanoscale Res Lett
                Nanoscale Res Lett
                Nanoscale Research Letters
                Springer US (New York )
                1931-7573
                1556-276X
                25 August 2016
                25 August 2016
                2016
                : 11
                : 1
                : 378
                Affiliations
                [1 ]Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
                [2 ]Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
                Article
                1594
                10.1186/s11671-016-1594-3
                4999383
                27562014
                8e1e09e1-6bea-460a-9ee3-73d5fe0120a7
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 26 May 2016
                : 16 August 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004329, Javna Agencija za Raziskovalno Dejavnost RS;
                Award ID: P2-0232
                Award ID: P2-0084
                Award ID: P2-0232
                Award ID: P2-0232
                Award ID: P2-0082
                Award Recipient :
                Categories
                Nano Express
                Custom metadata
                © The Author(s) 2016

                Nanomaterials
                tio2 nanostructured surfaces,zeta potential,surface charge,tio2 nanotubes,anodization

                Comments

                Comment on this article