Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stiffness of the Gastrocnemius–Achilles Tendon Complex Between Amateur Basketball Players and the Non-athletic General Population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Muscle and tendon stiffness are related to sports performance, tendinopathy, and tendon degeneration. However, the effects of habitual loading on muscle and tendon mechanical properties are unclear. Using amateur basketball players as examples, we investigated the effects of mechanical loading on the stiffness of the gastrocnemius–Achilles tendon (AT) complex in non-dominant and dominant lower limbs. Then, we evaluated the correlation between gastrocnemius and AT stiffness. Forty participants (20 amateur basketball players; 20 normal non-athletic persons) were recruited for this study. Stiffness of the gastrocnemius–AT complex was assessed using MyotonPRO at neutral position and 10° dorsiflexion of the ankle joint in participants from amateur basketball players and the non-athletic general population. Our results showed a greater stiffness of the gastrocnemius–AT complex in amateur basketball players than that in healthy non-athletic subjects at neutral position and 10° dorsiflexion of the ankle joint ( P < 0.05). No significant difference in stiffness was found between the non-dominant and dominant lower limbs either in amateur basketball players or in generally healthy subjects ( P > 0.05). A significant positive correlation was obtained between stiffness of the AT and medial gastrocnemius (MG) in amateur basketball players (neutral position: r = 0.726 and P = 0.001; dorsiflexion 10°: r = 0.687 and P = 0.001). The amateur basketball players exhibit significantly higher stiffness value in Achilles and gastrocnemius. This is possibly caused by repeated training effects. The symmetric stiffness of the AT and gastrocnemius exists both in amateur basketball players and generally healthy subjects. A significant correlation between the AT and the MG was found in amateur basketball players.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running.

          Ultrasound imaging has recently been used to distinguish the length changes of muscle fascicles from those of the whole muscle tendon complex during real life movements. The complicated three-dimensional architecture of pennate muscles can however cause heterogeneity in the length changes along the length of a muscle. Here we use ultrasonography to examine muscle fascicle length and pennation angle changes at proximal, distal and midbelly sites of the human gastrocnemius medialis (GM) muscle during walking (4.5 km/h) and running (7.5 km/h) on a treadmill. The results of this study have shown that muscle fascicles perform the same actions along the length of the human GM muscle during locomotion. However the distal fascicles tend to shorten more and act at greater pennation angles than the more proximal fascicles. Muscle fascicles acted relatively isometrically during the stance phase during walking, however during running the fascicles shortened throughout the stance phase, which corresponded to an increase in the strain of the series elastic elements (SEEs) (consisting of the Achilles tendon and aponeurosis). Measurement of the fascicle length changes at the midbelly level provided a good approximation of the average fascicle length changes across the length of the muscle. The compliance of the SEE allows the muscle fascicles to shorten at a much slower speed, more concomitant with their optimal speed for maximal power output and efficiency, with high velocity shortening during take off in both walking and running achieved by recoil of the SEE.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude.

            Tendons are able to remodel their mechanical and morphological properties in response to mechanical loading. However, there is little information about the effects of controlled modulation in cyclic strain magnitude applied to the tendon on the adaptation of tendon's properties in vivo. The present study investigated whether the magnitude of the mechanical load induced as cyclic strain applied to the Achilles tendon may have a threshold in order to trigger adaptation effects on tendon mechanical and morphological properties. Twenty-one adults (experimental group, N=11; control group, N=10) participated in the study. The participants of the experimental group exercised one leg at low-magnitude tendon strain (2.85+/-0.99%) and the other leg at high-magnitude tendon strain (4.55+/-1.38%) of similar frequency and volume. After 14 weeks of exercise intervention we found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus and a region-specific hypertrophy of the Achilles tendon only in the leg exercised at high strain magnitude. These findings provide evidence of the existence of a threshold or set-point at the applied strain magnitude at which the transduction of the mechanical stimulus may influence the tensional homeostasis of the tendons. The results further show that the mechanical load exerted on the Achilles tendon during the low-strain-magnitude exercise is not a sufficient stimulus for triggering further adaptation effects on the Achilles tendon than the stimulus provided by the mechanical load applied during daily activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo.

              This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower (P < 0.01) Achilles tendon stiffness and 32% lower (P < 0.001) Young's modulus than young participants. Tendon cross-sectional area was also 16% larger (P < 0.001) in older participants. Triceps surae muscle size was smaller (P < 0.05) and gastrocnemius medialis muscle fascicle length shorter (P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Young's modulus (r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                10 December 2020
                2020
                : 11
                : 606706
                Affiliations
                [1] 1Department of Sport Rehabilitation, Shanghai University of Sport , Shanghai, China
                [2] 2The First Clinical Medical School, Shaanxi University of Chinese Medicine , Xi’an, China
                [3] 3Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province , Luoyang, China
                Author notes

                Edited by: Emiliano Cè, University of Milan, Italy

                Reviewed by: Taian Martins Vieira, Politecnico di Torino, Italy; Simon-Henri Schless, Alyn Hospital, Israel; Hsing-Kuo Wang, National Taiwan University, Taiwan

                *Correspondence: Zhi-Jie Zhang, sportspt@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.606706
                7758317
                33362580
                8e17f760-34c5-4b7d-8e08-2b833074b0d3
                Copyright © 2020 Chang, Li, Wang and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 September 2020
                : 13 November 2020
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 62, Pages: 8, Words: 0
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                stiffness,adaptation,achilles tendon,gastrocnemius,basketball
                Anatomy & Physiology
                stiffness, adaptation, achilles tendon, gastrocnemius, basketball

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content475

                Cited by11

                Most referenced authors500