25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nano-based approach to combat emerging viral (NIPAH virus) infection

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.

          Graphical Abstract

          Nipah virus (NiV) infects the host cell via cell surface receptor leading to the formation of syncytium, gradual degradation of which leads to the release of the virus in to blood streams, and transmission of infection to different organs. With nanotechnology it could be possible to detect and inactivate NiV infection specifically through targeted tagging or by blocking viral surface proteins. As these viral surface proteins are also expressed in NiV-infected cell which contributes towards the formation of syncytium, therefore designing a targeted nano-system against these expressed proteins, could also be helpful in prohibiting the spread of viral infection.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Antiviral actions of interferons.

          C Samuel (2001)
          Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Titanium dioxide nanoparticles: a review of current toxicological data

            Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interferons and their receptors—distribution and regulation

              The interferons (IFNs) were originally described over 50 years ago, identified by their ability to confer viral resistance to cells. We now know that they are much more than just anti‐viral cytokines collectively having roles in both innate and adaptive immune responses, in tumor surveillance and defense, and modulation of immune cell function. Three types of IFN have now been described, simply referred to as type I, II and III. Distinguishable by the unique receptors that they rely on for signal transduction, the three types of IFN have specific and varied roles in the maintenance of human health and defense against pathogens. In mounting an IFN‐mediated immune response, the human body has developed the ability to regulate IFN‐mediated signal transduction. Like all cytokines, the ability of a cell to respond to IFN is completely dependent on the presence of its cognate receptor on the surface of the target cell. Thus, one of the major mechanisms used by the human body to regulate the strength and duration of the IFN response is through regulation of receptor levels, thereby altering the cytokine‐specific responsiveness of the target cell. This review will discuss the receptor system utilized by the type I IFNs and compare it with that of the type II and III IFNs, which also regulate immune responses through controlling receptor level on the cell surface.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nanomedicine
                Nanomedicine
                Nanomedicine
                Elsevier Inc.
                1549-9634
                1549-9642
                21 March 2019
                June 2019
                21 March 2019
                : 18
                : 196-220
                Affiliations
                [a ]Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
                [b ]Departmentof Life Science, National Institute of Technology, Rourkela, Odisha, India
                [c ]College of Veterinary Medicine, Mekelle University, Ethiopia
                [d ]Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
                Author notes
                [* ]Correspondence to: Dr. Jayanta Kumar Patra, Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi-10326, Republic of Korea. jkpatra.cet@ 123456gmail.com
                [** ]Correspondence to: Dr. Sanatan Majhi, Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India. sanatanm@ 123456gmail.com
                Article
                S1549-9634(19)30065-6
                10.1016/j.nano.2019.03.004
                7106268
                30904587
                8e099274-cc2b-4041-9bcc-6fdfc1562237
                © 2019 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 19 February 2019
                Categories
                Article

                Nanotechnology
                nanomedicine,diagnostics,nipah virus,antiviral,virucide
                Nanotechnology
                nanomedicine, diagnostics, nipah virus, antiviral, virucide

                Comments

                Comment on this article