6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glycoengineering approach to half-life extension of recombinant biotherapeutics.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The potential for protein-engineered biotherapeutics is enormous, but pharmacokinetic modulation is a major challenge. Manipulating pharmacokinetics, biodistribution, and bioavailability of small peptide/protein units such as antibody fragments is a major pharmaceutical ambition, illustrated by the many chemical conjugation and recombinant fusion approaches being developed. We describe a recombinant approach that leads to successful incorporation of polysialic acid, PSA for the first time, onto a therapeutically valuable protein. This was achieved by protein engineering of the PSA carrier domain of NCAM onto single-chain Fv antibody fragments (one directed against noninternalizing carcinoembryonic antigen-CEA and one against internalizing human epidermal growth factor receptor-2-HER2). This created novel polysialylated antibody fragments with desired pharmacokinetics. Production was achieved in human embryonic kidney cells engineered to express human polysialyltransferase, and the recombinant, glycosylated product was successfully fractionated by ion-exchange chromatography. Polysialylation was verified by glycosidase digestion and mass spectrometry, which showed the correct glycan structures and PSA chain length similar to that of native NCAM. Binding was demonstrated by ELISA and surface plasmon resonance and on live cells by flow cytometry and confocal immunofluorescence. Unexpectedly, polysialylation inhibited receptor-mediated endocytosis of the anti-HER2 scFv. Recombinant polysialylation led to an estimated 3-fold increase in hydrodynamic radius, comparable to PEGylation, leading to an almost 30-fold increase in blood half-life and a similar increase in blood exposure. This increase in bioavailability led to a 12-fold increase in tumor uptake by 24 h. In summary, recombinant polysialylation of antibody fragments in our system is a novel and feasible approach applicable for pharmacokinetic modulation, and may have wider applications.

          Related collections

          Author and article information

          Journal
          Bioconjug. Chem.
          Bioconjugate chemistry
          American Chemical Society (ACS)
          1520-4812
          1043-1802
          Aug 15 2012
          : 23
          : 8
          Affiliations
          [1 ] Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, UK, SW7 2AZ.
          Article
          10.1021/bc200624a
          22681552
          8dddff17-9eb0-442b-9fa0-0035c95d7b35
          History

          Comments

          Comment on this article