0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation and Characterization of Montmorillonite Intercalation Compounds with Quaternary Ammonium Surfactant: Adsorption Effect of Zearalenone

      , , , ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Montmorillonite (Mt) was used as the original material to prepare intercalation compounds with quaternary ammonium surfactant (QAS). The adsorption of zearalenone (ZEA) onto Mt and organomodified Mt was investigated in vitro. Effects of QAS in binding ZEA were studied. By the method of intercalation with dioctadecylmethylbenzylammonium chloride (DOMBAC), the sample exhibited the highest adsorption rate of ZEA (93.2%) which was much higher than that of Mt (10.5%). Several methods were adopted to characterize samples, including XRD, TG/DSC, N 2adsorption/desorption, and FTIR. Adsorption isotherm parameters were obtained from Langmuir and Freundlich and the adsorption data fitted better to Langmuir. All results indicate that organomodified Mt has great potential to be a high-performance material to control ZEA contamination.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin.

          Zearalenone (ZEA) is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. It is frequently implicated in reproductive disorders of farm animals and occasionally in hyperoestrogenic syndromes in humans. There is evidence that ZEA and its metabolites possess oestrogenic activity in pigs, cattle and sheep. However, ZEA is of a relatively low acute toxicity after oral or interperitoneal administration in mice, rat and pig. The biotransformation for ZEA in animals involves the formation of two metabolites alpha-zearalenol (alpha-ZEA) and beta-zearalenol (beta-ZEA) which are subsequently conjugated with glucuronic acid. Moreover, ZEA has also been shown to be hepatotoxic, haematotoxic, immunotoxic and genotoxic. The exact mechanism of ZEA toxicity is not completely established. This paper gives an overview about the acute, subacute and chronic toxicity, reproductive and developmental toxicity, carcinogenicity, genotoxicity and immunotoxicity of ZEA and its metabolites. ZEA is commonly found on several foods and feeds in the temperate regions of Europe, Africa, Asia, America and Oceania. Recent data about the worldwide contamination of foods and feeds by ZEA are considered in this review. Due to economic losses engendered by ZEA and its impact on human and animal health, several strategies for detoxifying contaminated foods and feeds have been described in the literature including physical, chemical and biological process. Dietary intakes of ZEA were reported from few countries from the world. The mean dietary intakes for ZEA have been estimated at 20 ng/kgb.w./day for Canada, Denmark and Norway and at 30 ng/kgb.w./day for the USA. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) established a provisional maximum tolerable daily intake (PMTDI) for ZEA of 0.5 microg/kg of body weight.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses

              The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions.
                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2014
                2014
                : 2014
                :
                : 1-7
                Article
                10.1155/2014/167402
                8db85d5a-23e6-498b-ad12-40e86fd9b485
                © 2014

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article