4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supramolecular chiral polymeric aggregates: Construction and applications

      1 , 1 , 1 , 2 , 1
      Aggregate
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication of novel biomaterials through molecular self-assembly.

          Two complementary strategies can be used in the fabrication of molecular biomaterials. In the 'top-down' approach, biomaterials are generated by stripping down a complex entity into its component parts (for example, paring a virus particle down to its capsid to form a viral cage). This contrasts with the 'bottom-up' approach, in which materials are assembled molecule by molecule (and in some cases even atom by atom) to produce novel supramolecular architectures. The latter approach is likely to become an integral part of nanomaterials manufacture and requires a deep understanding of individual molecular building blocks and their structures, assembly properties and dynamic behaviors. Two key elements in molecular fabrication are chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly. Using natural processes as a guide, substantial advances have been achieved at the interface of nanomaterials and biology, including the fabrication of nanofiber materials for three-dimensional cell culture and tissue engineering, the assembly of peptide or protein nanotubes and helical ribbons, the creation of living microlenses, the synthesis of metal nanowires on DNA templates, the fabrication of peptide, protein and lipid scaffolds, the assembly of electronic materials by bacterial phage selection, and the use of radiofrequency to regulate molecular behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-assembly at all scales.

            Self-assembly is the autonomous organization of components into patterns or structures without human intervention. Self-assembling processes are common throughout nature and technology. They involve components from the molecular (crystals) to the planetary (weather systems) scale and many different kinds of interactions. The concept of self-assembly is used increasingly in many disciplines, with a different flavor and emphasis in each.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Supramolecular Chirality in Self-Assembled Systems.

                Bookmark

                Author and article information

                Contributors
                Journal
                Aggregate
                Aggregate
                Wiley
                2692-4560
                2692-4560
                February 2023
                September 06 2022
                February 2023
                : 4
                : 1
                Affiliations
                [1 ]State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Industrial Park Suzhou P. R. China
                [2 ]School of Chemical Engineering and Technology State Key Laboratory of Chemical Engineering Tianjin University Tianjin P. R. China
                Article
                10.1002/agt2.262
                8d2f9cec-0b3e-45fa-ad90-8c3b3d2dcb42
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article