Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle.

          IMPORTANCE Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.

          Related collections

          Author and article information

          Contributors
          Role: Editor
          Journal
          J Bacteriol
          J. Bacteriol
          jb
          jb
          JB
          Journal of Bacteriology
          American Society for Microbiology (1752 N St., N.W., Washington, DC )
          0021-9193
          1098-5530
          31 May 2016
          13 July 2016
          1 August 2016
          : 198
          : 15
          : 2131-2139
          Affiliations
          [a ]Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
          [b ]Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
          [c ]Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
          [d ]Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, Washington, USA
          Geisel School of Medicine at Dartmouth
          Author notes
          Address correspondence to David E. Nelson, nelsonde@ 123456indiana.edu .

          Citation Brothwell JA, Muramatsu MK, Toh E, Rockey DD, Putman TE, Barta ML, Hefty PS, Suchland RJ, Nelson DE. 2016. Interrogating genes that mediate Chlamydia trachomatis survival in cell culture using conditional mutants and recombination. J Bacteriol 198:2131–2139. doi: 10.1128/JB.00161-16.

          Article
          PMC4944222 PMC4944222 4944222 00161-16
          10.1128/JB.00161-16
          4944222
          27246568
          8c5ec3d7-5dd4-43aa-b86e-2906115ec084
          Copyright © 2016, American Society for Microbiology. All Rights Reserved.
          History
          : 17 February 2016
          : 24 May 2016
          Page count
          Figures: 4, Tables: 2, Equations: 0, References: 57, Pages: 9, Words: 6939
          Funding
          Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) http://dx.doi.org/10.13039/100000060
          Award ID: AI099278
          Award Recipient : David E. Nelson
          Categories
          Articles

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content795

          Cited by13