18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Uncovering Two Competing Switching Mechanisms for Epitaxial and Ultrathin Strontium Titanate-Based Resistive Switching Bits

      1 , 1 , 1 , 1
      ACS Nano
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resistive switches based on anionic electronic conducting oxides are promising devices to replace transistor-based memories due to their excellent scalability and low power consumption. In this study, we create a model switching system by manufacturing resistive switches based on ultrathin 5 nm, epitaxial, and grain boundary-free strontium titanate thin films with subnanometer surface roughness. For our model devices, we unveil two competing nonvolatile resistive switching processes being of different polarities: one switching in clockwise and the other in counterclockwise direction. They can be activated selectively with respect to the effective switching voltage and time applied to the device. Combined analysis of both processes with electrical DC-methods and electrochemical impedance spectroscopy reveals that the first resistive switching process is filament-based and exhibits counterclockwise bipolar resistive switching. The R(OFF)/R(ON) resistance ratio of this process is extremely stable and can be tuned in the range 5-25 depending on the switching voltage and time. Excitingly, at high electric field strength a second bipolar resistive switching process was found. This process is clockwise and, therefore, reveals the opposite polarity switching direction when compared to the first one. Both processes do not obstruct each other, consequently, stable 1, 2, or even 3 crossover current-voltage (I-V) characteristics can be addressed for the memory bits. Equivalent circuit model analysis and fitting of impedance characteristics unequivocally show for the created grain boundary free switches that the oxide's defects and its carrier distribution close to the electrode interface contribute to the resistive switching mechanism. The addressability of two sets of resistive ON and OFF states in one device through electric field strength and switching time offers exciting new operation schemes for memory devices.

          Related collections

          Author and article information

          Journal
          ACS Nano
          ACS Nano
          American Chemical Society (ACS)
          1936-0851
          1936-086X
          October 07 2015
          November 24 2015
          October 16 2015
          November 24 2015
          : 9
          : 11
          : 10737-10748
          Affiliations
          [1 ]Electrochemical Materials, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
          Article
          10.1021/acsnano.5b02752
          26448096
          8c1d1743-7f1a-422d-8c94-6983c837cda4
          © 2015
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content7,823

          Cited by24