32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate / inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (T H) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between T H cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell / antibody response and dysregulated T H cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-6: from basic science to medicine--40 years in immunology.

          This essay summarizes my 40 years of research in immunology. As a young physician, I encountered a patient with Waldenström's macroglobulinemia, and this inspired me to study the structure of IgM. I began to ask how antibody responses are regulated. In the late 1960s, the essential role of T cells in antibody production had been reported. In search of molecules mediating T cell helper function, I discovered activities in the culture supernatant of T cells that induced proliferation and differentiation of B cells. This led to my life's work: studying one of those factors, interleukin-6 (IL-6). To my surprise, IL-6 turned out to play additional roles, including myeloma growth factor and hepatocyte-stimulating factor activities. More importantly, it was involved in a number of diseases, such as rheumatoid arthritis and Castleman's disease. I feel exceptionally fortunate that my work not only revealed the framework of cytokine signaling, including identification of the IL-6 receptor, gp130, NF-IL6, STAT3, and SOCS-1, but also led to the development of a new therapy for chronic inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Human housekeeping genes are compact.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung.

              Granulomas play an essential role in the sequestration and killing of mycobacteria in the lung; however, the mechanisms of their development and maturation are still not clearly understood. IL-17A is involved in mature granuloma formation in the mycobacteria-infected lung. Therefore, IL-17A gene-knockout (KO) mice fail to develop mature granulomas in the Mycobacterium bovis bacille Calmette-Guérin (BCG)-infected lung. This study analyzed the mechanism of IL-17A-dependent mature granuloma formation in the mycobacteria-infected lung. The IL-17A KO mice showed a normal level of nascent granuloma formation on day 14 but failed to develop mature granulomas on day 28 after the BCG infection in the lung. The observation implies that IL-17A is required for the maturation of granuloma from the nascent to mature stage. TCR gammadelta T cells expressing TCR Vgamma4 or Vgamma6 were identified as the major IL-17A-producing cells that resided in the BCG-induced lung granuloma. The adoptive transfer of the IL-17A-producing TCR gammadelta T cells reconstituted granuloma formation in the IL-17A KO mice. The expression of ICAM-1 and LFA-1, which are adhesion molecules important in granuloma formation, decreased in the lung of the BCG-infected IL-17A KO mice, and their expression was induced on BCG-infected macrophages in coculture with IL-17A-producing TCR gammadelta T cells. Furthermore, IL-17A KO mice showed not only an impaired mature granuloma formation, but also an impaired protective response to virulent Mycobacterium tuberculosis. Therefore, IL-17A produced by TCR gammadelta T cells plays a critical role in the prevention of M. tuberculosis infection through the induction of mature granuloma formation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central
                0928-4249
                1297-9716
                2013
                16 July 2013
                : 44
                : 1
                : 55
                Affiliations
                [1 ]Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
                Article
                1297-9716-44-55
                10.1186/1297-9716-44-55
                3733943
                23865616
                8c0e0b08-8fab-4fea-859c-e9c5aa0035dc
                Copyright © 2013 Gorgoglione et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2013
                : 25 June 2013
                Categories
                Research

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article